Publications

Publications

Dixon, T. A., Williams, T. C., & Pretorius, I. S. (2021). Sensing the future of bio-informational engineering. Nature Communications, 12(1), 1- 12.

Peng, K., Kroukamp, H., Pretorius, I. S., & Paulsen, I. T. (2021). Yeast synthetic minimal biosensors for evaluating protein production. ACS Synthetic Biology, 10(7), 1640-1650.

Llorente, B., Segretin, M. E., Giannini, E., Lobais, C., Juárez, M. E., Paulsen, I. T., & Blanco, N. E. (2021). Homecoming: rewinding the reductive evolution of the chloroplast genome for increasing crop yields. Nature communications, 12(1), 1-5.

Espinosa, Monica I., Ricardo A. Gonzalez-Garcia, Kaspar Valgepea, Manuel R. Plan, Colin Scott, Isak S. Pretorius, Esteban Marcellin, Ian  T. Paulsen, and Thomas C. Williams. "Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae." Nature communications 11, no. 1 (2020): 1-12.

Carpenter, A. C., Paulsen, I. T., & Williams, T. C. (2018). Blueprints for biosensors: design, limitations, and applications. Genes, 9(8), 375.

Williams, T. C., Xu, X., Ostrowski, M., Pretorius, I. S., & Paulsen, I. T. (2017). Positive-feedback, ratiometric biosensor expression improves high-throughput metabolite-producer screening efficiency in yeast. Synthetic Biology, 2(1), ysw002.

Williams, T. C., Pretorius, I. S., & Paulsen, I. T. (2016). Synthetic evolution of metabolic productivity using biosensors. Trends in biotechnology34(5), 371-381.

Wightman, E. L., Kroukamp, H., Pretorius, I. S., Paulsen, I. T., & Nevalainen, H. K. (2020). Rapid colorimetric detection of genome evolution in SCRaMbLEd synthetic Saccharomyces cerevisiae strains. Microorganisms, 8(12), 1914.

Wightman, E. L., Kroukamp, H., Pretorius, I. S., Paulsen, I. T., & Nevalainen, H. K. (2020). Rapid optimisation of cellulolytic enzymes ratios in Saccharomyces cerevisiae using in vitro SCRaMbLE. Biotechnology for biofuels, 13(1), 1-10.

Xu, X., Williams, T. C., Divne, C., Pretorius, I. S., & Paulsen, I. T. (2019). Evolutionary engineering in Saccharomyces cerevisiae reveals a TRK1-dependent potassium influx mechanism for propionic acid tolerance. Biotechnology for biofuels, 12(1), 1-14.

Back to the top of this page