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Abstract

The Least-Squares Monte Carlo method has gained popularity recent years due
to its ability to handle multi-dimensional stochastic control problems without re-
strictions on the state dynamics, including problems with state variables affected
by control. However, when applied to stochastic control problems in the multi-
period expected utility models, the regression fit tends to contain errors which
accumulate over time and typically blow up the numerical solution. In this pa-
per we propose to transform the value function of stochastic control problems to
improve the regression fit, and then using either the ‘Smearing Estimate’ or ‘Con-
trolled Heteroskedasticity’ to avoid the re-transformation bias. We also present
and utilise recent improvements in Least-Squares Monte Carlo algorithms such as
control randomisation with policy iteration to avoid regression errors from accumu-
lating. Presented numerical examples demonstrate that our transformation method
allows for control of disturbance terms to be handled correctly and leads to an ac-
curate solution. In addition, in the forward simulation stage of the algorithm, we
propose a re-sampling of state variables at each time step instead of simulating
continuous paths, to improve the exploration of the state space that also appears
to be important to obtain a stable and accurate solution for expected utility models.

Keywords: Dynamic programming, Least-Squares Monte Carlo, control randomi-
sation, stochastic control, lifecycle modelling

JEL classification: D91 (Intertemporal Household Choice; Life Cycle Models and
Saving), G11 (Portfolio Choice; Investment Decisions), C61 (Optimization Tech-
niques; Programming Models; Dynamic Analysis)

1 Introduction

Stochastic control problems are at the heart of decision making under uncertainty and
are critical in many areas such as finance, health, environment, and mining. In stochastic
control problems there is always a choice to be made between model complexity, such as
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the number of state/control variables or stochastic factors, and computational cost. An-
alytical solutions are limited to problems with few stochastic factors with restrictions on
the dynamics and dimensions, otherwise one has to revert to numerical methods. Partial
Differential Equation methods suffer from the curse of dimensionality, and are practical
up to two dimensions only. Numerical direct integration solutions, such as determin-
istic quadratures also suffer as the number of dimensions increases, but can sometimes
handle more if we are willing to accept less precise solutions and longer computation
times. Simulation methods are therefore favoured when the number of state variables
and stochastic factors increases. The Stochastic Mesh method (Broadie and Glasserman,
2004) overcomes the dimensionality problem, but requires the transition densities of the
stochastic factors to be known and suffers as the number of time steps increases. One
simulation method that has received increasing interest among researchers is the Least-
Squares Monte Carlo method (LSMC), due to its effectiveness in dealing with higher
dimensions and because it imposes fewer restrictions on constraints and allows for flexi-
bility in the dynamics of underlying stochastic processes. The idea is based on simulating
random paths of the underlying stochastic variables over time and replacing the condi-
tional expectation of the value function in the Bellman backward recursive solution of
the stochastic control problem with an empirical least-squares regression estimate. The
transition density of the underlying process is not even required to be known in closed
form, which offers much more flexibility than alternative approaches.

LSMC was originally developed in Longstaff and Schwartz (2001) and Tsitsiklis and
Van Roy (2001). The regression is generally performed on the state variables in order
to approximate the value function. In the simpler case, where the state variable is ex-
ogenous (i.e. does not depend on control), the simulation and backward in time solution
are rather straightforward. When considering endogenous state variables (i.e. affected
by the control), however, the simulation becomes more complicated as the future states
are affected by the unknown control. The extensions to LSMC that are of particular in-
terest are methods where control variables are included in the regression basis functions1

(Denault et al., 2013, 2017; Kharroubi et al., 2014). Kharroubi et al. (2014) allow for
random control to be simulated and their algorithm (referred to as ‘control randomisa-
tion’) is the only theoretically justified LSMC algorithm with endogenous state variables.
This algorithm provides additional benefits of parametric estimate in a feedback form of
control, hence no solution grid for control is required (contrary to Denault et al. (2017)).

Naturally there are pitfalls with LSMC as well. Regression errors can accumulate over
multiple time periods and can eventually blow up, and as the number of samples increases
the algorithm becomes too computationally intensive. There are, however, methods to
deal with such problems. The value function can either be based on the ‘realised values’
(Longstaff and Schwartz, 2001; Denault et al., 2013, 2017; Zhang et al., 2016b) or on
the ‘regression surface’ (Tsitsiklis and Van Roy, 2001; Denault et al., 2017). Although
Denault et al. (2017) find little difference between ‘realised values’ and the ‘regression
surface’, it should be noted that the authors do not apply “true” realised values as the
value function is interpolated with respect to the choice of controls. True realised values,
which require re-simulation of paths after control is changed in order to calculate the
value function, avoid regression errors to accumulate hence appear to be more stable over
longer periods (Zhang et al., 2016b) although with the trade-off of longer computation
times. In addition, basis functions can often be difficult to find and can be highly problem

1A basis function is an element of a particular basis for a function space, where the full function space
can be expressed as a linear combination of some chosen functions.
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specific. Incorrectly defined basis functions will quickly inflate the regression errors and
blow up the solution of a multi-period stochastic control problem. This risk is especially
high with regard to objective functions based on utility functions.

LSMC has been applied in many different fields, such as pricing American options
(Longstaff and Schwartz, 2001; Tsitsiklis and Van Roy, 2001), mining and real options
(Chen et al., 2015), electricity (Denault et al., 2013) and portfolio allocation (Brandt
et al., 2005; Garlappi and Skoulakis, 2010; Zhang et al., 2016b) to mention a few. Research
with respect to certain issues in LSMC is very diverse, such as heteroskedasticity in
the regression (Fabozzi et al., 2017), avoiding re-computing realised paths (Glasserman
and Yu, 2004; Nadarajah et al., 2017; Nadarajah and Secomandi, 2017) or managing
discontinuity in the basis function (Langrene et al., 2015).

With regard to problems involving utility functions however, there has been very
limited research. Approximating a utility function with least-squares regression poses a
number of challenges when the agent is risk averse due to very high second derivatives of
the utility functions. Regression directly on the value function works only when samples
of the state variable are restricted to a sub-domain rather than the full domain. If the
full domain is used, then the fit of the regression will be unsatisfactory in parts of the
domain due to the high curvature of the value function. This will not work in the case
where a control can move the state variable over the full domain, such as a consumption
problem where the decision can move the state of wealth from high to zero. It can work
if the control has less influence over the change in the state variable, such as in portfolio
allocation problems, as the allocation of assets will not result in as significant change in
wealth compared to consumption. Even then authors acknowledge problems as volatility
or risk aversion increases (Brandt et al., 2005; Denault et al., 2017).

Attempts have been made to resolve this issue, such as utilising Taylor series expan-
sions around the value function (Brandt et al., 2005; Garlappi and Skoulakis, 2010) or
by transformations. However, Taylor series expansions require the utility function to be
differentiable, often with a minimum of four times and also add effort to compute the
derivatives. Garlappi and Skoulakis (2010) apply an inverse utility function to the value
function in order to perform the regression on the transformed value function, which does
indeed improve the regression fit, but results in a ‘re-transformation bias’ due to Jensen’s
inequality2. Such transformation also ignores any volatility of stochastic variables and
underestimates risk. Denault et al. (2017) on the other hand only applies the transfor-
mation when interpolating in order to use a more coarse grid for state variables, but the
use of a grid voids the purpose of ‘true’ LSMC. Zhang et al. (2016a) suggest using basis
functions with the independent variables transformed using a utility function, but if the
domain covers a larger part of the curvature of the utility functions the regression errors
will not be homogeneous, hence still result in a bias.

If the regression is carried out on the non-transformed value function, then control
of disturbance terms is possible but the regression fit might be questionable. If the
regression instead is carried out on the transformed value function, then the fit will most
likely be better but optimal control related to disturbance will be unreliable. In this
paper two methods are proposed to deal with the re-transformation bias, based on the
characteristics of the problem, in order to account for difficulties in using LSMC with
utility functions such as control of disturbance and re-transformation bias. In addition,
a modification based on re-sampling state variables at each time step is suggested to the
probabilistic numerical algorithm that combines dynamic programming with LSMC in

2Jensen’s inequality states that for a random variable Z and a concave function ψ, ψ(E[Z]) ≥ E[ψ(Z)].
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Kharroubi et al. (2014, 2015) to improve the exploration of the state space, which further
helps with the efficiency of the method in the case of expected utility models.

The paper is structured as follows. In Section 2 the basic problem definition is stated,
and Section 3 describes methods to avoid re-transformation bias. In Section 4 the LSMC
algorithms are explained. The accuracy of the algorithm together with the methods to
deal with the re-transformation bias and proposed re-sampling of the state variables at
each time step are presented in Section 5. Finally, concluding remarks are in Section 6.

2 Problem definition

Let t = 0, 1, ..., N correspond to equispaced points in time interval [0, T ] and (Ω, F ,
{Ft}0≤t≤N , P) be a filtered complete probability space where Ft represents the information
available up to time t. We assume that all the processes introduced below are well defined
and adapted to {Ft}t≥0. Let π = (πt)t=0,...,N be a control taking value in an action space
A ⊆ Rd, Z = (Zt)t=1,...,N ∈ Z ⊆ Rd be a disturbance term with realisation zt and
Xπ = (Xπ

t )t=0,...,N ∈ X ⊆ Rd be a controlled state variable. We also assume that the
evolution of the state variable is described by a transition function

Xπ
t+1 = Tt (Xπ

t , πt, Zt+1) , (1)

hence the state of the next period depends on the state of the current period, the control
decision and the realisation of the disturbance term.

Now consider the standard discrete dynamic programming problem with the objective
to maximise the expected value of total reward function

V0(x) = sup
π

E

[
βNRN(Xπ

N) +
N−1∑
t=0

βtRt(X
π
t , πt)

∣∣∣ Xπ
0 = x; π

]
, (2)

where RN and Rt are reward functions satisfying the integrability conditions, and β is a
time discount factor over a time step. This type of problem can be solved with backward
recursion of the Bellman equation

Vt(x) = sup
πt

{
Rt(x, πt) + E

[
βVt+1(X

π
t+1)

∣∣∣ Xπ
t = x; πt

]}
, t = N − 1, ..., 0,

VN(x) = RN(x).
(3)

The solution of such a problem is often not possible to find analytically and numer-
ical methods are required. As the number of state variables, stochastic processes, or
control variables increases, the numerical solution quickly becomes very computationally
expensive. In the standard case, where state is not affected by control, the idea behind
utilitising the LSMC method is to approximate the conditional expectation in Equation
(3)

Φt(Xt) = E [βVt+1(Xt+1)|Xt] , (4)

by a regression scheme with independent variables Xt, and response variable βVt+1(Xt+1).

The approximation of the function is then denoted as Φ̂t. However, if the state is affected
by control, then control randomization is required and the conditional expectation

Φt(X
π
t , πt) = E

[
βVt+1(X

π
t+1)|Xπ

t ; πt
]
, (5)

is estimated by regression on Xπ
t and randomised πt (Kharroubi et al., 2014).

For ease of notation the superscript π on the state variable is now dropped.
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3 Transformation of utility

One of the difficulties with LSMC is to select correct basis functions for regression es-
timate of conditional expectation Φt(Xt, πt). Commonly used basis functions include
polynomials such as Chebyshev, Hermite, Laguerre and Legendre (Table 1) or one can
use Appell polynomials as the generalized form of many standard polynomials (Novikov
and Shiryaev, 2005). Unless the function that is being approximated is convex/concave or
smooth, such as piecewise linear, the basis functions might only work locally. Increasingly
complex (e.g. higher order) basis functions can be used with increasing number of sample
paths to improve the accuracy, but this comes with a computational cost. However, when
reward functions Rt(x, ·) in (3) are based on the standard utility functions, such as Con-
stant Relative Risk Aversion (CRRA) U(x) = xγ/γ or Hyperbolic Absolute Risk Aversion
(HARA) U(x) = (x− a)γ/γ, the basis functions do not produce accurate solution unless
constrained locally. A model based on utility functions will have a value function with
a similar shape, hence the same problems will arise when fitting the basis functions to
Vt+1(Xt+1) as if fitting it to a utility function. A more effective solution is to perform a
transformation based on the utility function, and account for the re-transformation bias.

Table 1: Definition of common polynomials used as basis functions up to the nth order.

Polynomial f0(x) f1(x) fn(x)

Chebyshev 1 x 2xfn−1(x)− fn−2(x)

Hermite 1 x (−1)ne−x
2 dn

dxn
(e−x

2
)

Laguerre 1 1− x (2(n−1)+1−x)fn−1(x)−(n−1)fn−2(x)
n

Legendre 1 x 1
2nn!

dn

dxn
(x2 − 1)n

Define a utility function U : R→ R to be an increasing, monotonic and concave func-
tion. Consider a stochastic control problem (3) where the reward is based on this utility
function. Then a value function Vt(x) equals the utility function at time T and will have a
similar shape for t < N . Such a function is difficult to fit with linear regression due to the
extreme curvature of common utility functions. For example, consider a CRRA utility
function U(x) = xγ/γ with a risk aversion parameter γ < 0. The first problem arises
when fitting the regression to low values of x, since when x → 0 then U(x) → −∞ and
therefore no intercept exists. This could be avoided by using fractional polynomials in the
basis functions, which are polynomials with fractional exponents. These polynomials (or
independent variables with negative exponents) tend to approximate the utility function
shape better. Unfortunately, fitting such a model is non-trivial when the utility function
is not CRRA or the utility function exerts any kind of piecewise behaviour in relation
to the state variables. If a transformation is applied to either decrease the non-linearity
in the utility function or to deal with non-normality and heteroskedastic residuals, then
Jensen’s inequality results in an incorrect projection when the regression is transformed
back since E[U(·)] ≤ U(E[·]) due to U being concave. The solution will therefore be
biased. In addition to this, any control variables that relate to disturbance terms (such
as allocation between risky and risk-free assets in wealth allocation problems) will be
biased because risk is underestimated.

To improve the approximation of the value function with the least-squares regres-
sion we propose that the regression is performed on the transformed value function and
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adjusted for the inverse transformation bias with a bias correction function to account
for Jensens’s inequality. The value function transformed using the inverse of the utility
function will have less non-linearity and will allow for an intercept, hence it will have
better fit with linear regression (although non-linear independent variables might still be
required). Specifically, we proceed as follows.

Define a transformation H−1 : R→ R and the inverse (‘re-transformation’) H : R→
R such that H−1(H(x)) = x. It is implied that state variables still depend on control. Let
L(Xt, πt) be a vector of basis functions and Λt the corresponding regression coefficients
vector, such that

E
[
H−1(βVt+1(Xt+1))|Xt; πt

]
= Λ′tL(Xt, πt). (6)

If M independent Markovian paths of state and control variables are simulated, one
can consider the ordinary linear regression

H−1(βVt+1(X
m
t+1)) = Λ′tL(Xm

t , πt) + εmt ,

εmt
iid∼ Ft(·), E[εmt ] = 0, var[εmt ] = σ2

t , m = 1, ...,M
(7)

to estimate the regression coefficients as

Λ̂t = arg min
Λt

M∑
m=1

[
H−1(βVt+1(X

m
t+1))−Λ′tL(Xm

t , π
m
t )
]2
. (8)

It is well known that the estimator Λ̂t is the best linear unbiased estimator which is also
consistent and asymptotically normally distributed. If the disturbances εmt are normally
distributed, then this estimator is the maximum likelihood estimator and asymptotically
efficient. Moreover, if disturbances εmt are heteroscedastic (have different variance), this
estimator remains unbiased, consistent, and asymptotically normally distributed but no
longer efficient; see for example (Greene, 2008, chapter 8).

Our objective is to estimate Φt(X
π
t , πt) = E

[
βVt+1(X

π
t+1)|Xπ

t ; πt
]

that can be ex-
pressed as

Φt(Xt, πt) := HB(Λ′tL(Xt, πt)) =

∫
H(Λ′tL(Xt, πt) + εt)dFt(εt), (9)

where Ft(εt) is the distribution of disturbance term εt. Obviously, in general, naive
estimation

ĤB(Λ̂′tL(Xt, πt)) = H(Λ̂′tL(Xt, πt)) (10)

will be neither unbiased nor consistent (even if we know the true parameters Λt) unless
the transformation is linear.

If a specific distribution is assumed for εt, then the integration in (9) can be performed
(in closed form for some cases). Otherwise, the empirical distribution of residuals

ε̂mt = H−1(βVt+1(X
m
t+1))− Λ̂′tL(Xm

t , π
m
t ), (11)

can be used to perform the required integration as proposed in (Duan, 1983) leading to
the following estimate.

Smearing Estimate:

ĤB(Λ̂′tL(Xt, πt)) =

∫
H(Λ̂′tL(Xt, πt) + εt)dF̂M(εt)

=
1

M

M∑
m=1

H(Λ̂′tL(Xt, πt) + ε̂mt ),

(12)
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where F̂M(εt) is the empirical distribution function of the estimated residuals (see Ap-
pendix A for details).

If heteroskedasticity is present in the regression with respect to state and control
variables, a method that accounts for the heteroskedasticity is required. In this case the
conditional variance can be modelled as a function of covariates,

var[εt|Xt, πt] = [Ω(L′tC(Xt, πt))]
2, (13)

where Ω(·) is some positive function, Lt is the vector of coefficients and C(Xt, πt) is a

vector of basis functions. There are various standard ways to find estimates L̂t, the one
we use in this paper is based on squared residuals of the ordinary least squares method
as outlined in Appendix B. Then, one can use the Smearing Estimate with Controlled
Heteroskedasticity proposed in (Zhou et al., 2008) and defined as follows.

Smearing Estimate with Controlled Heteroskedasticity:

ĤB(Λ̂′tL(Xt, πt)) =
1

M

M∑
m=1

H

(
Λ̂′tL(Xt, πt) + Ω(L̂

′
tC(Xt, πt))

ε̂mt

Ω(L̂
′
tC(Xm

t , π
m
t ))

)
. (14)

Here, it is also common to replace Λ̂t with the weighted least squares estimator that can
be found after estimation of Ω(·), see for example two-step procedure in (Greene, 2008,
chapter 8).

It should be noted that an alternative would be to use Generalised Linear Mod-
els, where no transformation of the value function is required and which allow for het-
eroskedasticity through a link function. However, Generalised Linear Models are reported
to be quite imprecise when the error distribution assumptions are inaccurate (Baser,
2007), or if the distribution family is misspecified. For a more flexible approach with
fewer restrictions we prefer to use Smearing Estimate if no control of disturbance terms
is required, and Smearing Estimate with Controlled Heteroskedasticity if control variables
are related to disturbance terms in the model. These methods also have the additional
advantage that the utility function does not need to be differentiable or continuous, as
long as a transformation that roughly represents the shape of the value function can be
found.

4 LSMC algorithm

In this section we describe the LSMC algorithms for the exogenous state and the endoge-
nous state with control randomisation. In addition, we use an example with Bermudan
options to benchmark the re-transformation method with bias correction against the
standard LSMC method.

4.1 Basic algorithm with exogenous state

The basic exogenous state LSMC commonly used in research literature, presented below
in Algorithm 1, is based on two parts: a forward simulation and a backward solution
with optimal control. First, random state paths Xm

t ,m = 1, ...,M, are generated which
are affected by random disturbances, following the state evolution in Equation (1) for
t = 0, ..., N . The problem is then solved in a dynamic programming fashion, where the
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reward function is first evaluated at time t = N . Then, starting at t = N − 1 we find the
optimal control for each t by regressing the value function at t+ 1 on the state variables
at t. Once a decision has been made, the value function is updated with the outcome
and calculations are repeated for t− 1 until we find value function at 0.

Algorithm 1 LSMC for exogenous state

[Forward simulation]
1: for t = 0 to N do
2: for m = 1 to M do

[Simulate random path]
3: if t = 0 then
4: Xm

t := S0

5: else
6: Xm

t := Tt(Xm
t−1, zt)

7: end if
8: end for
9: end for

[Backward solution]
10: for t = N to 0 do
11: if t = N then
12: V̂t(Xt) := RN (Xt)
13: else if t < N then

[Regress transformed value function on state variables]

14: Λ̂t := arg minΛt

∑M
m=1

[
Λ′tL(Xm

t )−H−1(βV̂t+1(Xm
t+1))

]2
15: Find bias corrected transformation HB(Λ̂′tL(Xt))

[Approximate conditional expectation]

16: Φ̂t(Xt) := HB(Λ̂′tL(Xt))
17: for m = 1 to M do

[Optimal control]

18: π∗t (Xm
t ) := arg supπt∈A

{
Rt(X

m
t , πt) + Φ̂t(X

m
t )
}

19: V̂t(X
m
t ) := Rt(X

m
t , π

∗
t (Xm

t )) + βV̂t+1(Xm
t+1)

20: end for
21: end if
22: end for

To illustrate the LSMC algorithm, we start with a basic exogenous state version of
LSMC applied to pricing standard Bermudan options in the same manner as in Longstaff
and Schwartz (2001). These options can only be exercised at pre-specified dates and at
maturity. Although an option that can be exercised prior to maturity does not have a
truly exogenous state (as the state changes if the option is exercised), it can still be written
in such a way that it can be presented in the current framework and the exogenous state
algorithm can be used. Since Algorithm 1 shows the general algorithm for the exogenous
state, some minor changes are required in order to use it for Bermudan options and will
be discussed further down.

Since utility functions are not used in the pricing, no transformation of the value func-
tion is required (hence the value function estimate will not suffer from a re-transformation
bias other than possible bias from regression errors). Consider a put option as in the
original paper (Longstaff and Schwartz, 2001). Let t = 0, 1, ..., N correspond to the
pre-specified equidistant exercise dates obtained by dividing the option maturity T into
N steps of length δt = T/N . The option underlying asset price St evolves (under the
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so-called risk-neutral process appropriate for valuation of option fair value) as

St+1 = Ste
(r−σ2/2)δt+σZt

√
δt, Zt

i.i.d∼ N (0, 1), (15)

where r is risk free interest rate, σ is volatility and N (0, 1) is the standard normal
distribution. The discounting factor for each time period is β = e−rδt. The control
variable takes on two values, πt ∈ {0, 1}, which represent continuation if πt = 0 or
immediate exercising if πt = 1. The state variable consists of the current asset price and
an absorbing state, Xt = {St,∆}, where ∆ indicates that the option has already been
exercised. The transition probabilities for the absorbing state are

Pr[Xt+1 = ∆|Xt = ∆] = Pr[Xt+1 = ∆|Xt = St, πt = 1] = 1, (16)

while the transition probability Pr[Xt+1 ∈ dSt+1|Xt = St, πt = 0] corresponds to the
process for the asset price. Any other transitions cannot occur, such as moving to the
absorbing state if the option is not exercised, hence the remaining transition probabilities
are zero.

The terminal reward depends on the moneyness of the option at expiration assuming
it has not been exercised,

RN(XN) =

{
max(0, K −XN), if XN 6= ∆,
0, if XN = ∆,

(17)

where K is the option strike price. The reward function at time t

Rt(Xt, πt) =

{
max(0, K −Xt), if Xt 6= ∆ and πt = 1,
0, otherwise,

(18)

only provides reward (a payoff) if the option has not been exercised earlier and the
decision is to exercise the option immediately. The solution of the problem starts by
evaluating the payoff at time N . The cash flow at this point is stored as VN(XN) and at
each previous time the decision to exercise the option or wait is determined by comparing
the immediate payoff max(0, K −Xt) with the continuation value E[e−rδtVt+1(Xt+1)|Xt].
The continuation value is the discounted expected value if the option is not exercised at
time t. The estimation of the continuation value is done by regressing the realised cash
flows of Vt+1(Xt+1) at time t + 1 discounted to t (if not exercised) on a vector L(Xt) of
basis functions of the state variable

E[e−rδtVt+1(Xt+1)|Xt] = Λ′tL(Xt), (19)

in order to approximate the conditional expectation Φt(Xt) = E [βVt+1(Xt+1)|Xt]. Note
that the state variable, if not exercised, is exogenous and not affected by any control, hence
the transition function in Equation (1) is simplified and depends only on the previous
state and the outcome of the disturbance term(s). The optimal control can then be
written as

π∗t (Xt) := arg max
πt
{Rt(Xt, πt) + (1− πt)Φt(Xt)} , (20)

since if the option is now exercised the continuation value will not be received, which is
reflected by (1 − πt) in front of the conditional expectation approximation, and is the
same as all future rewards are zero as the state will transition to the absorbing state

9



∆. Equation (20) therefore replaces line 18 in Algorithm 1. The effect of the decision is
recorded in the realised value of

V̂t(Xt) = Rt(Xt, π
∗
t (Xt)) + (1− π∗t (Xt))e

−rδtV̂t+1(Xt+1), (21)

which replaces line 19. If the option is exercised, the realised value equals the reward
for the current period, and if it is not exercised it equals the present value of future
rewards. The full objective function for the Bermudan option problem, which originally
is an optimal stopping problem, then leads to the same optimal stochastic control problem
as Equation (2).

As a numerical example, consider the Bermudan option when S0 = 36, K = 40,
r = 0.06, σ = 0.2, T = 1 and N = 12 (for results, see Table 2). The basis functions
are based on ordinary polynomials up to the fourth order of the state variable, and the
price is benchmarked against the Binomial Tree method. First, the problem is solved
using the standard LSMC (column V (0)). By using a log transformation of the value
function, i.e. H(x) = ex, the heteroskedasticity in the residual errors is reduced and we
get a better regression estimation, although the bias still remains when re-transformed
(column V (1) where naive estimation (10) is used). Finally, we correct for the bias after
re-transformation using Smearing Estimate (12). This log transformation with the bias
correction results in a more accurate price even with fewer sample paths (column V (2)).

Table 2: Price and standard error of Bermudan option estimated using standard LSMC (V (0)), LSMC
with log transformation of the value function without bias correction (V (1)) and LSMC with log transfor-
mation of value function and bias correction (V (2)) using Smearing Estimate. The results are based on M
sample paths, 20 independent repetitions (iterations), and the basis functions are ordinary polynomials
up to the 4th order. The ‘exact’ price obtained by the finite difference method is $4.3862.

M V (0) V (1) V (2)

1,000 4.4984 (0.032) 4.4336 (0.038) 4.4054 (0.039)
10,000 4.4616 (0.007) 4.4161 (0.007) 4.3962 (0.008)
100,000 4.4457 (0.003) 4.4048 (0.004) 4.3857 (0.004)

4.2 Endogenous state and random control

Algorithm 1 presented in previous section is the very basic case where optimal decisions
do not really affect the evolution of the state variable, with the exception of reaching
the absorbing (exercised) state. To extend it to the case with an endogenous state, we
adopt the discretised version of the control randomisation technique and LSMC algorithm
with realised values from Kharroubi et al. (2014), which is the only theoretically justified
LSMC algorithm with endogenous state variables. The algorithm is also based on forward
simulation and backward solution with optimal control, with the main difference that
random state paths in the forward simulation are affected by both a random control and
random disturbance. The regression to estimate the conditional expectation then includes
the random control in the basis functions. Kharroubi et al. (2014) present two alternative
versions of the control randomisation algorithm: the one that uses the regression surface
to update the value function,

V̂t(Xt) = Rt(Xt, π
∗
t (Xt)) + Φ̂t(Xt, π

∗
t (Xt)), (22)
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and another one that uses the realised value function,

V̂t(Xt) = Rt(Xt, π
∗
t (Xt)) + βV̂t+1(Xt+1). (23)

The difference is that the first method is a value function iteration (VFI), while the second
is a policy function iteration (PFI). The PFI requires a recalculation of the sample paths
for t + 1 to T after each iteration backwards, as the optimal control affects the future
state variables hence changes the simulated paths. This effect is already estimated in the
VFI version with Φt(Xt, πt), hence no recalculation is necessary. Longstaff and Schwartz
(2001) argue in favour of realised value function (23), while Tsitsiklis and Van Roy (2001)
use the regression surface (22). Denault et al. (2017) notice no difference between the
two, but only use a very local regression which does not include the endogenous state
variable. Due to the recalculation requirement with PFI the computational complexity
grows quadratically compared with linear growth for VFI. However, PFI tends to accu-
mulate much less regression errors over time and from experience this method is much
more suitable for problems prone to regression errors when the number of time periods
increases.

4.2.1 Forward simulation

The forward simulation in the case of endogenous state with control randomisation is
more delicate than in the case of exogenous state variables, and deserves a special discus-
sion below. The objective of the forward simulation is to generate enough information
(sample paths) such that the conditional expectation of state and control variables can
be estimated.

The algorithm is intended to be used with a known starting state x0 where each
simulated path Xm

t , t = 0, ..., N, is subject to the random control π̃mt and disturbances
in the diffusion process, given by the evolution in Equation (1). However, if the optimal
control π∗t tends to take on either a high or low value in the control domain A this will
cause a problem. On the one hand, if random control is uniformly distributed then the
simulated paths will end up in a sub-domain very different from the one if optimal control
is used at each time step. On the other hand, if the typical range of the optimal control
is known, a distribution to reflect this could be used to better simulate the randomised
control where more paths would end up in the same sub-domain as if the optimal control
was applied. While the former would lead to difficulties in the regression estimation due
to lack of state sample paths in sections of the state domain, the latter would do the
same due to lack of control samples outside the expected range (hence lack samples in
the full control domain A).

A better approach would be to simulate state and control for the full domain to ensure
a better fit for the regression. This can be achieved by using a random state each time t
that is independent of decisions and disturbance for 0, ..., t−1, as the simulated paths are
recalculated after each time period anyway. Denote X̃t as the state variable implied by
transition function Tt−1(Xt−1, πt−1, zt), where Xt is an independent random sample from
the state variable domain at each time step. If the state variable Xt would be simulated
using the transition function as a path for the full period t = 0, ..., T , then X̃t+1 = Xt+1

would hold. The logical steps of this procedure are summarized by Algorithm 2 below.
Each Xt is simulated independently of the previous state, which allows the algorithm to
spread samples over the full domain each time period to avoid the pitfalls described. This
will explore the space better and the reason for this will become apparent in Algorithm
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3. In the algorithm, Rand corresponds to random sampling from some distribution that
could be designed for the specific problem. These can be e.g. uniform distributions for
Xt and πt, while distribution for zt is model specific.

Algorithm 2 Forward simulation

1: for t = 0 to N − 1 do
2: for m = 1 to M do

[Simulate random samples ]
3: Xm

t := Rand ∈ X . State
4: π̃mt := Rand ∈ A . Control
5: zmt+1 := Rand ∈ Z . Disturbance

[Compute the state variable after control]

6: X̃m
t+1 := Tt(Xm

t , π̃
m
t , z

m
t+1) . Evolution of state

7: end for
8: end for

4.2.2 Backward optimisation

After the forward simulation step is completed, the problem is now solved with the
backward induction (Algorithm 3), similarly to Algorithm 1. The conditional expectation
Φt(·) of the value function at time t + 1 is estimated with a regression function, and
the optimal decision is found by maximising the sum of the reward function and the
approximated value function. Once the optimal decision has been found, the sample
paths t + 1, ..., N are recalculated with the new optimal control and the corresponding
value function for the realisation of the paths is stored to be used in the next iteration.

Algorithm 3 Backward solution (Realised value)

1: for t = N to 0 do
2: if t = N then
3: V̂t(X̃t) := RN (X̃t)
4: else if t < N then

[Regression of transformed value function]

5: Λ̂t := arg minΛt

∑M
m=1

[
Λ′tL(Xm

t , π̃t)−H−1(βV̂t+1(X̃m
t+1))

]2
6: Find bias corrected transformation HB(Λ̂′tL(Xt, π̃t))

[Approximate conditional expectation]

7: Φ̂t(Xt, π̃t) := HB(Λ̂′tL(Xt, π̃t))
8: for m = 1 to M do
9: X̂m

t := X̃m
t

[Optimal control]

10: π∗t (X̂m
t ) := arg supπt∈A

{
Rt(X̂

m
t , πt) + Φ̂t(X̂

m
t , πt)

}
[Update value function with optimal paths]

11: V̂t(X̂
m
t ) := Rt(X̂

m
t , π

∗
t (X̂m

t ))

12: X̂m
t+1 := Tt(X̂m

t , π
∗
t (X̂m

t ), zmt )
13: for tj = t+ 1 to N − 1 do

14: V̂t(X̂
m
t ) := V̂t(X̂

m
t ) + βtj−tRtj (X̂m

tj , π
∗
tj (X̂m

tj ))

15: X̂m
tj+1 := Tt(X̂m

tj , π
∗
tj (X̂m

tj ), zmtj )
16: end for
17: V̂t(X̂

m
t ) := V̂t(X̂

m
t ) + βN−tRN (X̂m

N )
18: end for
19: end if
20: end for
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Note that at terminal time t = N , where no decision is allowed, X̃N = XN holds true,
which is why X̃N is used on line 3 in Algorithm 3 (hence no need to simulate XN which
is reflected in Algorithm 2 as it stops at N − 1). Furthermore, on line 9 and 10 the state

after control X̃t is used, in order to estimate the value function for the current period t
on line 14. This way π∗t has been found and the value function for X̃t rather than Xt has
already been prepared so it can be used directly for the next iteration.

The loop starting at line 13 is crucial for multi-period stochastic control problems with
utility functions (unless the basis functions are correct for all periods). It updates the
forward simulation at each backward step with the optimal decision, similar to Longstaff
and Schwartz (2001). It therefore uses the realised value function rather than the regres-
sion surface (VFI and PFI methods in Equation (22) and (23)) and takes advantage of
the tower property of conditional expectations3. This step helps significantly with the ac-
curacy of the approximation as the time horizon extends, and avoids (or at least reduces)
the risk of the solution blowing up by limiting the accumulation of regression errors.
Compare this with Algorithm 4, which is the equivalent of Algorithm 3 but based on
the regression surface (VFI approach in Equation (22)) rather than realised values (PFI
approach in Equation (23)). The algorithm does not update the forward simulation at
each pass, hence is faster but might pile regression errors in the value function. However,
in Algorithm 3, the function for the optimal control π∗t (X̂t) is solved each time period
during the forward loop on line 13 that makes the algorithm more computationally expen-
sive. By storing the optimal control for each state sample, rather than just the regression
coefficients, the optimal control can instead be interpolated for each t. This significantly
speeds up the solution, especially as the number of dimensions/controls increases.

Algorithm 4 Backward solution (Regression surface)

1: for t = T to 0 do
2: if t = T then
3: V̂t(X̃t) := RN (X̃t)
4: else if t < T then

[Regression of transformed value function]

5: Λ̂t := arg minΛt

∑M
m=1

[
Λ′tL(Xm

t , π̃t)−H−1(βV̂t+1(X̃m
t+1))

]2
6: Find bias corrected transformation HB(Λ̂′tL(Xt, π̃t))

[Approximate conditional expectation]

7: Φ̂t(Xt, π̃t) := HB(Λ̂′tL(Xt, π̃t))
8: for m = 1 to M do
9: X̂m

t := X̃m
t

[Optimal control]

10: π∗t (X̂m
t ) := arg supπt∈A

{
Rt(X̂

m
t , πt) + Φ̂t(X̂

m
t , πt)

}
11: V̂t(X̂

m
t ) := Rt(X̂

m
t , π

∗
t (X̂m

t )) + Φ̂t(X̂
m
t , π

∗
t (X̂m

t ))
12: end for
13: end if
14: end for

If a fixed starting point X0 is desired as in the original algorithm, rather than a range
of potential starting points, then line 9 would be replaced at t = 0 with X̂m

0 := X0.

3The tower property states that when conditioning twice, with respect to nested σ-algebras, the
smaller amount of information always prevails such that E[E[Z|Ft+1]|Ft] = E[Z|Ft]
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4.3 Upper and lower bounds

The value function from Algorithm 3 is already a lower bound (up to the Monte Carlo
error), as replacing the supremum in Equation (3) with the estimated optimal control
yields a lower bound by definition of the supremum (Aı̈d et al., 2014). Similarly, an
approximate upper bound can be found by using the optimal control estimate π∗t from
Algorithm 3, but on line 11 in Algorithm 4 where the realised value function is replaced by
the regression surface. Given that estimator Φ̂t(Xt, πt) of the approximated conditional
expectation in Equation (5) is unbiased, this results in an upper bound up to the Monte
Carlo and regression error (Aı̈d et al., 2014).

Even if the transformation method minimises the regression error, the error will always
be present. Given a concave utility function these errors will be biased downwards. Since
this upper bound is based on the regression surface, rather than realised values, it will
accumulate significant regression bias over time and often leads to lower value than the
lower bound. An alternative approach is to use an upper bound based on the expected
change of the stochastic variables, as this will always be equal or larger according to
Jensen’s inequality given a concave utility function. As the lower and upper bound now
will suffer equally from the regression bias it represents a more realistic upper bound of
the solution. This only holds true for a concave utility function – if the function is convex
the inequality changes direction.

5 Accuracy of solution

In this section we examine the impacts of Smearing Estimate (12), Smearing Estimate
with Controlled Heteroskedasticity (14) and naive estimate without transformation bias
correction (10) on the accuracy of the LSMC numerical solution. Two basic models based
on CRRA utility are considered: optimal consumption, and optimal consumption and
risky asset allocation. The models have closed form solutions presented in Appendix C
which are used for benchmarking of our numerical methods. The chosen model parameter
values correspond to the ones causing problems with numerical solutions in Denault et al.
(2017) in the case of high risk aversion and volatility.

In both examples, we use 10 000 sample paths where state and control were sampled
from uniform distributions, and the disturbance term from a normal distribution. The
basis functions are ordinary polynomials up to the 4th order in both transformed state
and control variables, including mixed terms. The transformation used is based on the
exponent and a CRRA utility function, such that

H−1(x) = ln
[
(γx)1/γ

]
. (24)

Note that the examples below do not include the standard LSMC case, and use re-
sampling in the forward simulation (Algorithm 2). The reason is simply because the
standard LSMC method is not stable and the solution either blows up, or optimal control
equals full or zero consumption due to bad regression fit if re-sampling in the forward
simulation step is not used.

5.1 Consumption model

Consider a typical simple model where the agent receives utility by consuming a propor-
tion πt := αt ∈ [0, 1] of the endogenous state variable wealth Xt each period t = 0, ..., 9,
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hence terminal time T = N = 9 resulting in 10 evaluations. The utility at time t is
Rt(Xt, πt) = (αtXt)

γ/γ and utility of wealth at terminal time is RN(XN) = (αNXN)γ/γ
with risk aversion γ = −10. Wealth change between periods is based on a stochastic
return Z ∼ N (µ, σ2) with drift µ = 0.1 and standard deviation σ = 0.2, such that the
transition to the wealth at t+ 1 is

Xt+1 = Tt(Xt, πt, Zt+1) := Xt(1− αt)eZt+1 . (25)

The closed-form solution for optimal consumption is then

αt =

{
1, if t = N,

(1 + (eγµ+γ
2σ2/2αγ−1t+1 )

1
1−γ )−1, otherwise,

(26)

and the value function is

Vt(X
π
t ) =

(Xπ
t )γ

γ
(αt)

γ−1, (27)

as derived in Appendix C. The problem does not have any control variables for allocation
of wealth into the risky and riskless assets and is wealth independent, hence no het-
eroskedasticity will exist and Smearing Estimate (12) is accurate enough. Figure 1 shows
the optimal consumption each time period for the different methods described in previous
sections. A clear bias can be identified for the transformation without consideration to
the re-transformation bias, indicating it will not give an accurate solution, while the two
other methods based on Smearing Estimate (12) and Smearing Estimate with Controlled
Heteroscedastisity (14) are very close to the true optimal value.
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Figure 1: Optimal consumption αt as a percentage proportion of wealth for four different solution
methods.

15



5.2 Consumption and investment model

The second model we consider is based on the first, but extended with an additional
control variable for risky asset allocation. The agent now consumes a proportion of
wealth αt and chooses to allocate a proportion δt ∈ [0, 1] of remaining wealth into a risky
asset with stochastic return Zt and the rest into a risk free asset with deterministic return
r = 0.03. Hence, the decision variables are πt = (αt, δt) and the transition function is

Xt+1 = Tt(Xt, πt, Zt+1) := Xt(1− αt)eδtZt+1+(1−δt)r. (28)

This transition function is approximately the same as the correct transition function for
the specified allocation problem when returns are small. The closed-form solution (see
Appendix C) gives optimal consumption

αt =

{
1, if t = N,

(1 + (eγδtµ+γ
2δ2t σ

2/2+(1−δt)γrαγ−1t+1 )
1

1−γ )−1, otherwise,
(29)

optimal risky allocation

δt =
r − µ
γσ2

, (30)

and the value function is the same as in (27).
These changes introduce heteroskedasticity with respect to the control variable by

allowing control of the disturbance term, and the Smearing Estimate no longer gives a
correct solution. Figure 2 shows the optimal consumption for each time period and dif-
ferent methods, and Figure 3 shows the optimal risky allocation. Since the effect of the
disturbance control is not transformed back, the risk is underestimated and therefore sug-
gests full risky investment allocation as risk does not increase with higher allocation. The
Smearing Estimate then includes a slight bias with regards to optimal consumption due
to a constant risk being transformed, which is higher than the true optimal consumption
but still underestimated in regards to δt. The transformation without bias correction,
however, now seems to be accurate, but does in fact include two biases that happen to
cancel each other out in this example. As the risk is ignored, the risk from the transfor-
mation without bias correction is underestimated and full risky investment is suggested.
This in turn affects the expected capital growth, and together with the bias in the con-
sumption decision the overall bias is almost cancelled out. Controlled Heteroskedasticity,
on the other hand, considers the effect of disturbance terms once re-transformed and
leads to an unbiased solution (but still subject to noise, regression and numerical errors).
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Figure 2: Optimal consumption αt as a percentage proportion of wealth when the model allows risky
investments, for four different solution methods.
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Figure 3: Optimal allocation of risky assets δt for four different solution methods.

5.3 Bounded solutions

Even though the accuracy of the estimated optimal control variables compared with the
true optimal control is satisfactory, we performed a further analysis to see whether the
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calculated upper and lower bounds of the LSMC value function spans over the exact value
function. The bounds are estimated as described in Section 4.3, in the case of Model 2
with Controlled Heteroskedasticity (14), considered in Section 5.2. The problem is solved
with 20 independent iterations where each iteration involves M = 10000 independent
sample paths. In order to estimate the solution and standard errors, the solutions of
the 20 iterations are averaged and standard errors are calculated. Note that a utility
function will always bias errors downwards, assuming it is concave, and the extreme
curvature will quickly affect any bias. Therefore, the value function is compared on the
transformed scale. Table 3 shows the lower bound QL (which is the value from using
Algorithm 2 or 3), the upper bound QU from replacing the realised disturbance with the
expectated value of the disturbance term. The absolute difference of the true optimal
control parameters and the numerical solution for consumption, |∆α|, and risky asset
allocation, |∆δ|, are shown as the average and the maximum difference. Regression is
based on ordinary polynomials up to the n-th degree in both Xt and πt, and results in
the table are presented for n = 2, 3, 4, 6, 8.

Table 3: Bounded solutions and differences in control variables with different basis functions. The
analytical solution of the problem is H−1(V0) = 9119.

nth degree QL QU |∆α|avg |∆α|max |∆δ|avg |∆δ|max

2 8735.9 (1.4) 8968.2 (2.0) 0.0011 0.0016 0.0285 0.0640
3 8742.9 (1.2) 9009.1 (6.4) 0.0011 0.0017 0.0225 0.0562
4 8745.7 (1.7) 9027.0 (4.6) 0.0010 0.0016 0.0215 0.0737
6 8742.5 (2.0) 9006.4 (7.4) 0.0012 0.0018 0.0255 0.0832
8 8739.3 (2.1) 9001.0 (7.2) 0.0014 0.0032 0.0235 0.0602

The difference between the bounds and the true value is due to the regression bias,
and that an approximate model always will be suboptimal. As the upper bound given
in Aı̈d et al. (2014) contains a significant amount of regression bias over time, which is
further inflated by utility based objective functions, this value turns out to be lower than
QL and has been omitted from the table. Using an upper bound based on the expected
change of the stochastic variables will therefore reflect a more realistic upper bound,
although it can still be less than the true solution due to regression and numerical errors
or early stopping criteria in the optimisation of optimal control.

The difference between the approximation and the analytical solution equals to as
little difference as 4% using the forth order polynomials. The optimal control tends to
be close to the true optimal value. This can be seen when polynomials with a higher
order than four are used, as the regression model now contains redundant predictors.
The optimal control parameters are still within a valid range from their true value, even
though the non-transformed value function starts to deviate quickly.

6 Conclusion

LSMC provides many advantages in dynamic programming. Firstly, it does not suffer
from the ‘curse of dimensionality’ in the same way as other methods, and is therefore
faster than numerical methods such as PDE or quadrature based ones. Secondly, it does
not impose restrictions on the stochastic variable dynamics, hence, even an empirical
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distribution is sufficient. Finally, it returns a parametric estimate in a feedback form of
control which voids the need for a grid for control. However, there are many difficulties
as well. It is an approximate method only and can be computationally intensive – espe-
cially in finding the optimal control variables for each sample. The basis functions are
often difficult to find and highly problem-specific, and if they are not defined properly,
substantial errors can pile up over multiple periods.

In this paper the LSMC method was applied on stochastic control problems char-
acterised by utility functions. We found that standard LSMC does not work well for
these problems and suggest to perform regression on transformed value function and
then accounting for the re-transformation bias. The bias correction function can be con-
structed in various ways depending on the type of problem. The Smearing Estimate
can improve the accuracy of simpler problems without heteroskedasticity and control of
disturbance, while more complex problems require Smearing Estimate with Controlled
Heteroskedasticity if the heteroskedasticity depends on the state or control variables. The
latter requires performing two regressions, but since the computational burden is on the
optimisation and not the regression the additional computational cost is minimal. We
further observed that the standard forward simulation stage of LSMC should be modified
to achieve accurate results. In particular, we suggest to re-sample state variables inde-
pendently at each time step to achieve better exploration of the state space. This occurs
when the sample paths are simulated with control randomisation and the control has a
significant influence on the transition of the state variable, thus all sample paths tend
to end up in a small sub-domain of the state after simulation. By re-sampling the state
variables each time step, we can ensure that the samples exist in the full state variable
domain.

The numerical examples presented in the paper are very basic, but serve the purpose
of demonstrating the increased accuracy when re-transformation and bias correction are
applied. The motivation for our work on improving LSMC with respect to difficult
objective functions was to solve models in more realistic setups, such as the sequential
retirement model with optimal annuitisation and flexible housing decisions considered in
our work in progress Andreasson and Shevchenko (2017). Without the improvements
presented in this paper, such model would have to rely on quadrature based solutions
and would not be computationally feasible.
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Kharroubi, Idris, Nicolas Langrené, and Huyên Pham (2015), “Discrete time approximation of fully
nonlinear HJB equations via BSDEs with nonpositive jumps.” The Annals of Applied Probability, 25,
2301–2338.

Langrene, N, Tanya Tarnopolskaya, W Chen, Z Zhu, and M Cooksey (2015), “New Regression Monte
Carlo Methods for High-dimensional Real Options Problems in Minerals industry.” 21st International
Congress on Modelling and Simulation, 1077–1083.

Longstaff, Francis A and Eduardo S Schwartz (2001), “Valuing American Options by Simulation: A
Simple Least-Squares Approach.” Review of Financial Studies, 14, 113–147.

20

https://ssrn.com/abstract=2985830
https://ssrn.com/abstract=2985830
www.mssanz.org.au/modsim2015/E6/chen.pdf
http://link.springer.com/10.1007/978-3-642-18743-8{_}12


Muller, Hans-Georg and Ulrich Stadtmuller (1987), “Estimation of Heteroscedasticity in Regression
Analysis.” The Annals of Statistics, 15, 610–625.

Nadarajah, Selvaprabu, François Margot, and Nicola Secomandi (2017), “Comparison of least squares
Monte Carlo methods with applications to energy real options.” European Journal of Operational
Research, 256, 196–204, URL http://dx.doi.org/10.1016/j.ejor.2016.06.020.

Nadarajah, Selvaprabu and Nicola Secomandi (2017), “Relationship between least squares Monte Carlo
and approximate linear programming.” Operations Research Letters, 45, 409–414, URL http://dx.

doi.org/10.1016/j.orl.2017.05.010.

Novikov, A. A. and A. N. Shiryaev (2005), “On an Effective Solution of the Optimal Stopping Problem
for Random Walks.” Theory of Probability & Its Applications, 49, 344–354.

Samuelson, P (1969), “Lifetime portfolio selection by dynamic stochastic programming.” The Review of
Economics and Statistics, 51, 239–246.

Smyth, Gordon K. (1989), “Generalized linear models with varying dispersion.” Journal of the Royal
Statistical Society, 51, 47–60.

Tsitsiklis, J N and B Van Roy (2001), “Regression methods for pricing complex American-style options.”
IEEE Transactions on Neural Networks, 12, 694–703.

Zhang, Rongju, Nicolas Langren, Yu Tian, Zili Zhu, Fima Klebaner, and Kais Hamza (2016a), “Dynamic
Portfolio Optimisation with Intermediate Costs: A Least-Squares Monte Carlo Simulation Approach.”
SSRN Working Paper No 2696968.
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A Duan’s smearing estimate

The results in this section are based on Duan (1983). Denote the non-transformed
observations Yi, i = 1, ..., n and the transformed observations ηi, i = 1, ..., n such that
ηi = g(Yi), Yi = h(ηi), i.e. h := g−1. Assume g (the transformation) and h (the re-
transformation) are known monotonic and continuously differentiable functions, such as
a CRRA utility function h(x) = xγ/γ, γ < 0. Consider the linear regression carried out
on the transformed observations

ηi = β′Xi + εi, εi
i.i.d∼ F (·), E[εi] = 0, var[εi] = σ2, (31)

where β is the vector of coefficients, Xi is the vector of covariates and εi are the inde-
pendent and identically distributed residuals from some zero mean distribution F (·) with
finite variance. The error terms do not need to have a known distribution, although they
are expected to have zero mean and constant variance. Now, if the re-transformation is
applied to the prediction of the transformed variables we would get an incorrect estimate
due to Jensen’s inequality, because E[Y ] ≤ h(E[β′X + ε]) if h is a concave function such
as a utility function.
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Smearing Estimate attempts to approximate the non-transformed expectation

E[Y ] = E [h(β′X + ε)] =

∫
h (β′X + ε) dF (ε) (32)

after estimating the regression coefficients β̂ using the empirical distribution function of
the residuals ε̂i = ηi − β̂′Xi:

F̂n(e) =
1

n

n∑
i=1

I{ε̂i ≤ e}, (33)

where I{·} is the indicator symbol that equals 1 if the statement in brackets {·} is true
and 0 otherwise. The estimated expectation of Y can then be found as

Ê[Y ] =

∫
h
(
β̂′X + ε

)
dF̂n(ε) =

1

n

n∑
i=1

h
(
β̂′X + ε̂i

)
. (34)

To illustrate, suppose we consider regression lnYi = β′Xi+εi and we want to estimate
E[Y γ/γ], then the Smearing Estimate is

1

n

n∑
i=1

(
eβ̂
′X+ε̂i

)γ
γ

=

(
eβ̂
′X
)γ

nγ

n∑
i=1

eε̂iγ. (35)

The Smearing Estimate works well for non-normal errors and can accommodate for
heteroskedasticity, provided it is not related to a covariate.

B Controlled Heteroskedasticity

Consider a simple model with heteroskedasticity, such as Y = β′X + ε where X is a
vector of covariates, β is a vector of regression coefficients, E[ε] = 0 and var[ε] = σ2c(X).
There are various ways to estimate function c(X) that is causing heteroskedasticity.
In particular, we adopt a popular method from Harvey (1976) (also see Baser (2007),
(Greene, 2008, chapter 8)). Assume c(X) = eL

′X to avoid negative values, where L =
L0,L1, ...,LK is another vector of regression coefficients. Thus

ε2 = σ2c(X)v = σ2eL
′Xv2, E[v] = 0, E[v2] = 1 (36)

and we can write
ln(ε2) = a+ L1X1 + ...+ LKXK + ln v2, (37)

where a = ln(σ2) + L0. The parameter estimates are found by two-stage procedure.

First, we find the ordinary least squares estimate β̂ and calculate the observed residuals
ε̂ = Y −β̂′X. Then we perform the ordinary linear regression (37) where unobserved ε are

replaced with ε̂ to estimate the variance function σ̂2 exp(L̂
′
X). Finally, using estimated

variance, β is approximated by the weighted least squares method. The process can be
iterated to improve the estimates.

Other methods to estimate c(X) include random effect representation (Hoff and Niu,
2012), kernel estimates (Muller and Stadtmuller, 1987) or via link functions (Smyth,
1989).
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C Solution to multiperiod utility model

In this section we derive the analytical solution for optimal drawdown and risky asset
allocation in the multiperiod utility model considered in Section 5.2. The objective is to
maximize the expected value function

V0(x) = sup
π

E

[
N−1∑
t=0

(αtXt)
γ

γ

∣∣∣ X0 = x; π

]
. (38)

Let ξt represent the stochastic component in the transition function, such as ξt = eZt+1 in
the case of a single risky asset. This type of problem was originally solved in Samuelson
(1969).

At the terminal time t = N , the value function is given by

VN(XN) =
(αNXN)γ

γ
. (39)

It is optimal to consume all wealth as no utility is received from saving wealth, hence by
intuition αN = 1. The risky asset allocation at this point has no impact.

At time t = N − 1, the value function is

VN−1(XN−1) =
(αN−1XN−1)

γ

γ
+ E [VN(XN)]

=
(αN−1XN−1)

γ

γ
+

((1− αN−1)XN−1)
γE
[
ξγN−1

]
γ

.

(40)

To find the optimal drawdown, differentiate with respect to αN−1

∂VN−1
∂αN−1

= XN−1(αN−1XN−1)
γ−1 −XN−1((1− αN−1)XN−1)

γ−1E
[
ξγN−1

]
, (41)

set this equal to 0 and solve for αN−1

XN−1(αN−1XN−1)
γ−1 −XN−1((1− αN−1)XN−1)

γ−1E
[
ξγN−1

]
= 0

⇒ αN−1 = (1− αN−1)E
[
ξγN−1

] 1
γ−1

⇒ αN−1 = (1 + E
[
ξγN−1

] 1
1−γ )−1.

(42)

If the stochastic growth of wealth depends on a control variable, such as if ξN−1 =
eδN−1ZN+(1−δN−1)rN−1 considered in the model in section 5.2, then the same steps are used

to find the optimal risky asset allocation δN−1. In this case, assuming Zt
i.i.d∼ N (µ, σ2),

∂VN−1
∂δN−1

= E
[
(ZN − r)((1− αN−1)XN−1)

γξγN−1
]

(43)

⇒ E
[
(ZN − r)(eδN−1ZN+(1−δN−1)rN−1)γ

]
= 0

⇒ δN−1 =
r − µ
γσ2

.
(44)
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Finally, use αN−1 to find the maximum of the value function VN−1

VN−1(XN−1) =
(αN−1XN−1)

γ

γ
+

((1− αN−1)XN−1)
γE
[
ξγN−1

]
γ

=
(XN−1)

γ

γ
((αN−1)

γ + (1− αN−1)γ)E
[
ξγN−1

]
=

(XN−1)
γ

γ
(αN−1)

γ−1,

(45)

which will be used in the next iteration. By repeating these steps for t = N − 2, ..., 0 a
distinct pattern is found, where

αt =

{
1, if t = N,

(1 + (E [ξγt ]αγ−1t+1 )
1

1−γ )−1, otherwise.
(46)
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