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Abstract

Variable annuities, as a class of retirement income products, allow equity market exposure for

a policyholder’s retirement fund with electable additional guarantees to limit the downside

risk of the market. Management fees and guarantee insurance fees are charged respectively for

the market exposure and for the protection from the downside risk. We investigate the pricing

of variable annuity guarantees under optimal withdrawal strategies when management fees

are present. We consider from both policyholder’s and insurer’s perspectives optimal with-

drawal strategies and calculate the respective fair insurance fees. We reveal a discrepancy

where the fees from the insurer’s perspective can be significantly higher due to the manage-

ment fees serving as a form of market friction. Our results provide a possible explanation of

lower guarantee insurance fees observed in the market than those predicted from the insurer’s

perspective. Numerical experiments are conducted to illustrate the results.

JEL classification: C61, G22
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1. Introduction

Variable annuities (VA) with guarantees of living and death benefits are offered by wealth

management and insurance companies worldwide to assist individuals in managing their pre-

retirement and post-retirement financial plans. These products take advantages of market

growth while provide a protection of the savings against market downturns. Similar guaran-

tees are also available for life insurance policies (Bacinello and Ortu [2]). The VA contract

cash flows received by the policyholder are linked to the investment portfolio choice and per-

formance (e.g. the choice of mutual fund and its strategy) while traditional annuities provide
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a pre-defined income stream in exchange for a lump sum payment. Holders of VA policies

are required to pay management fees regularly during the term of the contract for the wealth

management services.

A variety of VA guarantees, also known as VA riders, can be elected by policyholders

at the cost of additional insurance fees. Common examples of VA guarantees include guar-

anteed minimum accumulation benefit (GMAB), guaranteed minimum withdrawal benefit

(GMWB), guaranteed minimum income benefit (GMIB) and guaranteed minimum death ben-

efit (GMDB), as well as a combination of them, e.g., guaranteed minimum withdrawal and

death benefit (GMWDB), among others. These guarantees, generically denoted as GMxB,

provide different types of protection against market downturns, shortfall of savings due to

longevity risk or assurance of stability of income streams. Precise specifications of these prod-

ucts can vary across categories and issuers. See Bauer et al. [3], Ledlie et al. [20], Kalberer

and Ravindran [17] for an overview of these products.

The Global Financial Crisis during 2007-08 led to lasting adverse market conditions such

as low interest rates and asset returns as well as high volatilities for VA providers. Under these

conditions, the VA guarantees become more valuable, and the fulfillment of the corresponding

required liabilities become more demanding. The post-crisis market conditions have called for

effective hedging of risks associated with the VA guarantees (Sun et al. [29]). As a consequence,

the need for accurate estimation of hedging costs of VA guarantees has become increasingly

important. Such estimations consist of risk-neutral pricing of future cash flows that must be

paid by the insurer to the policyholder in order to fulfill the liabilities of the VA guarantees.

There have been a number of contributions in the academic literature considering the

pricing of VA guarantees. A range of numerical methods are considered, including standard

and regression-based Monte Carlo (Huang and Kwok [15]), partial differential equation (PDE)

and direct integration methods (Milevsky and Salisbury [23], Dai et al. [9], Chen and Forsyth

[5], Bauer et al. [3], Luo and Shevchenko [21, 22], Forsyth and Vetzal [11], Shevchenko and

Luo [28]). A comprehensive overview of numerical methods for the pricing of VA guarantees

is provided in Shevchenko and Luo [27].

In this article we focus on GMWDB which provides a guaranteed withdrawal amount

per year until the maturity of the contract regardless of the investment performance, as well

as a lump-sum of death benefit in case the policyholder dies over the contract period. The

guaranteed withdrawal amount is determined such that the initial investment is returned

over the life of the contract. The death benefit may assume different forms depending on the

details of the contract. When pricing GMWDB, one typically assumes either a pre-determined

(static) policyholder behavior in withdrawal and surrender, or an active (dynamic) strategy

where the policyholder “optimally” decides the amount of withdrawal at each withdrawal date

depending on the information available at that date.

One of the most debated aspects in the pricing of GMWDB with active withdrawal strate-
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gies is the policyholders’ withdrawal behaviors (Cramer et al. [7], Chen and Forsyth [5], Moenig

and Bauer [24], Forsyth and Vetzal [11]). It is often customary to refer to the withdrawal

strategy that maximizes the expected liability, or the hedging cost, of the VA guarantee as

the “optimal” strategy. Even though such a strategy underlies the worst case scenario for the

VA provider with the highest hedging cost, it may not coincide with the real-world behavior

of the policyholder. Nevertheless, the price of the guarantee under this strategy provides

an upper bound of hedging cost from the insurer’s perspective, which is often referred to as

the “value” of the guarantee. The real-world behaviors of policyholders often deviate from

this “optimal” strategy, as is noted in Moenig and Bauer [24]. Different models have been

proposed to account for the real-world behaviors of policyholders, including the reduced-form

exercise rules of Ho et al. [14], and the subjective risk neutral valuation approach taken by

Moenig and Bauer [24]. In particular, it is concluded by Moenig and Bauer [24] that a subjec-

tive risk-neutral valuation methodology that takes different tax structures into consideration

is in line with the corresponding findings from empirical observations.

Similar to the tax consideration in Moenig and Bauer [24], the management fee is a

form of market friction that would affect policyholders’ rational behaviors. However, such

effects of management fees have not been considered in the VA pricing literature. When the

management fee is zero and deterministic withdrawal behavior is assumed, Hyndman and

Wenger [16] and Fung et al. [12] show that risk-neutral pricing of guaranteed withdrawal

benefits in both a policyholder’s and an insurer’s perspectives will result in the same fair

insurance fee. Few studies that take management fees into account in the pricing of VA

guarantees include Bélanger et al. [4], Chen et al. [6] and Kling et al. [18]. In these studies,

fair insurance fees are considered from the insurer’s perspective with the management fees as

given. The important question of how the management fees as a form of market friction will

impact withdrawal behaviors of the policyholder, and hence the hedging cost for the insurer,

is yet to be examined in a dynamic withdrawal setting. The main goal of the paper is to

address this question.

The paper contributes to the literature in three aspects. First, we consider two pricing

approaches based on the policyholder’s and the insurer’s perspective. In the literature it

is most often the case that only an insurer’s perspective is considered, which might result

in mis-characterisation of the policyholder’s withdrawal strategies. Second, we characterize

the impact of management fees on the pricing of GMWDB, and demonstrate that the two

afore-mentioned pricing perspectives lead to different fair insurance fees due to the presence

of management fees. In particular, the fair insurance fees from the policyholder’s perspective

is lower than those from the insurer’s perspective. This provides a possible justification of

lower insurance fees observed in the market. Third, the sensitivity of the fair insurance fees to

management fees under different market conditions and contract parameters are investigated

and quantified through numerical examples.
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The paper is organized as follows. In Section 2 we present the contract details of the

GMWDB guarantee together with its pricing formulation under a stochastic optimal control

framework. Section 3 derives the policyholder’s value function under the risk-neutral pricing

approach, followed by the insurer’s net liability function in Section 4. In Section 5 we com-

pare the two withdrawal strategies that maximize the policyholder’s value and the insurer’s

liability, respectively, and discuss the role of the management fees in their relations. Section 6

demonstrates our approaches via numerical examples. Section 7 concludes with remarks and

discussion.

2. Formulation of the GMWDB pricing problem

We begin with the setup of the framework for the pricing of GMWDB and describe the

features of this type of guarantees. The problem is formulated under a general setting so that

the resulting pricing formulation can be applied to different GMWDB contract specifications.

Besides the general setting, we also consider a very specific simple GMWDB contract, which

will be subsequently used for illustration purposes in numerical experiments presented in

Section 6.

The VA policyholder’s retirement fund is usually invested in a managed wealth account

that is exposed to financial market risks. A management fee is usually charged for this

investment service. In addition, if GMWDB is elected, extra insurance fees will be charged

for the protection offered by the guarantee provider (insurer). We assume the wealth account

guaranteed by the GMWDB is subject to continuously charged proportional management

fees independent of any fees charged for the guarantee insurance. The purpose of these

management fees is to compensate for the wealth management services provided, or perhapse

merely for the access to the guarantee insurance on the investment. This fee should not be

confused with other forms of market frictions, e.g., trasaction costs, if any, that must incur

when tracking a given equity index. Given the proliferation of index-tracking exchange-traded

funds in recent years, with much desired liquidity at a fraction of the costs of the conventional

index mutual funds, see, e.g., [1, 19, 26], regarding these management fees as additional costs

to policyholder beyond the normal market frictions seems to be a reasonable assumption.

The hedging cost of the guarantee, on the other hand, is paid by proportional insurance

fees continuously charged to the wealth account. The fair insurance fee rate, or the fair fee

in short, refers to the minimal insurance fee rate required to fund the hedging portfolio, so

that the guarantee provider can eliminate the market risk associated with the selling of the

guarantees.

We consider the situation where a policyholder purchases the GMWDB rider in order to

protect his wealth account that tracks an equity index S(t) at time t ∈ [0, T ], where 0 and

T correspond to the inception and expiry dates. The equity index account is modelled under
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the risk-neutral probability measure Q following the stochastic differential equation (SDE)

dS(t) = S(t) (r(t)dt+ σ(t)dB(t)) , t ∈ [0, T ], (1)

where r(t) is the risk-free short interest rate, σ(t) is the volatility of the index, which are

time-dependent and can be stochastic, and B(t) is a standard Q-Brownian motion modelling

the uncertainty of the index. Here, we follow standard practices in the literature of VA

guarantee pricing by modelling under the risk-neutral probability measure Q, which allows

the pricing of stochastic cash flows to be given as the risk-neutral expectation of the discounted

cash flows. The risk-neutral probability measure Q exists if the underlying financial market

satisfies certain “no-arbitrage” conditions. Adopting risk-neutral pricing here assumes that

stochastic cash flows in the future can be replicated by dynamic hedging without transaction

fees. For details on risk-neutral pricing and the underlying assumptions, see, e.g., Delbaen

and Schachermayer [10] for an account under very general settings.

The wealth account W (t), t ∈ [0, T ] over the lifetime of the GMWDB contract is invested

into the index S, subject to management fees charged by a wealth manager at the rate αm(t).

An additional charge of insurance fees at rate αins(t) for the GMWDB rider is collected by

the insurer to pay for the hedging cost of the guarantee. Both fees are deterministic, time-

dependent and continuously charged. Discrete fees may be modelled similarly without any

difficulty. The wealth account in turn evolves as

dW (t) = W (t) ((r(t)− αtot(t))dt+ σ(t)dB(t)) , (2)

for any t ∈ [0, T ] at which no withdrawal of wealth is made. Here, αtot(t) = αins(t) + αm(t)

is the total fee rate. The GMWDB contract allows the policyholder to withdraw from a

guarantee account A(t), t ∈ [0, T ] on a sequence of pre-determined contract event dates,

0 = t0 < t1 < · · · < tN = T . The initial guarantee A(0) usually matches the initial wealth

W (0). The guarantee account stays constant unless a withdrawal is made on one of the event

dates, which changes the guarantee account balance. If the policyholder dies on or before

the maturity T , the death benefit will be paid at the next event date immediately following

the death of the policyholder. Additional features such as early surrender can be included

straightforwardly but will not be considered in this article to avoid unnecessary complexities.

To simplify notations, we denote by Y(t) the vector of state variables at t, given by

Y(t) = (r(t), σ(t), S(t),W (t), A(t)), t ∈ [0, T ]. (3)

Here, we assume that all state variables follow Markov processes under the risk-neutral prob-

ability measure Q, so that Y(t) contains all the market and account balances information

available at t. For simplicity, we assume the state variables r(t), σ(t) and S(t) are continuous,
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and W (t) and A(t) are left continuous with right limit (LCRL). We include the index value

S(t) in Y(t), which under the current model may seem redundant, due to the scale-invariance

of the geometric Brownian motion type model (1). In general, however, S(t) may determine

the future dynamics of S in a nonlinear fashion, as is the case under, e.g., the minimal market

model described in Platen and Heath [25].

We define I(t), t ∈ [0, T ] as the life indicator function of an individual policyholder as

the following: I(t) = 1 if the policyholder was alive on the last event date on or before t;

I(t) = 0 if the policyholder was alive on the second-to-the-last event date prior to t but

died on or before the last event date; I(t) = −1 if the policyholder died on or before the

second-to-the-last event date prior to t. We assume the policyholder is alive at t0. The life

indicator function I(t) therefore starts at I(t0) = 1, is right continuous with left limit (RCLL),

and remains constant between two consecutive event dates. Note that mortality information

contained in I(t) (RCLL) comes before any jumps of the LCRL account balances W (t) and

A(t) on the event dates, reflecting the situation that any jumps in these account balances may

depend on the mortality information. We denote the vector of state variables including I(t)

as X(t) = (Y(t)>, I(t))>, and we denote by EQ
t [·] the risk-neutral expectation conditional on

the state variables X(t) at t, i.e., EQ
t [·] := EQ[·|X(t)]. Note that the risk-neutral measure Q

is assumed to extend to the mortality risk represented by the life indicator I(t).

On event dates tn, n = 1, . . . , N , a nomimal withdrawal γn from the guarantee account

is made. The policyholder, if alive, may choose γn on tn < T . Otherwise a liquidation

withdrawal of max(W (tn), A(tn)) is made. That is,

γn = Γ(tn,Y(tn))1{I(tn)=1,n<N} + max (W (tn), A(tn))1{I(tn)=0 orn=N}, (4)

where 1{} denotes the indicator function of an event, and Γ(·, ·) is referred to as the withdrawal

strategy of the policyholder. The real cash flow received by the policyholder, which may differ

from the nominal amount, is denoted by Cn(γn,X(tn)). This is given by

Cn(γn,X(tn)) = Pn(γn,Y(tn))1{I(tn)=1} +Dn(Y(tn))1{I(tn)=0}, (5)

where Pn(γn,Y(tn)) is the payment received if the policyholder is alive, and Dn(Y(tn)) de-

notes the death benefit if the policyholder died during the last period. As a specific example,

Pn(γn,Y(tn)) may be given by

Pn(γn,Y(tn)) = γn − βmax(min(γn, A(tn))−Gn, 0). (6)

Here the contractual withdrawal Gn is a pre-determined withdrawal amount specified in the

GMWDB contract, and β is the penalty rate applied to the part of the withdrawal from

the guarantee account exceeding the contractual withdrawal Gn. The min(γn, A(tn)) term
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in (6) accommodates the situation that at expiration of the contract, both accounts are

liquidated, but only the guarantee account withdrawals exceeding the contractual rate Gn

will be penalized. Excess balance on the wealth account after the guaranteed withdrawal is

not subject to this penalty. An example of the death benefit may simply be taken as the total

withdrawal without penalty, i.e.,

Dn(Y(tn)) = max (W (tn), A(tn)) . (7)

Upon withdrawal by the policyholder, the guarantee account is changed by the amount

Jn(γn,Y(tn)), that is,

A(t+n ) = A(tn)− Jn(γn,Y(tn)), (8)

where A(t+n ) denotes the guarantee account balance “immediately after” the withdrawal. For

example, Jn(γn,Y(tn)) may be given by

Jn(γn,Y(tn)) = γn1{I(tn)=1} +A(tn)1{I(tn)≤0}, (9)

i.e., the guarantee account balance is reduced by the withdrawal amount if the policyholder

is alive and the policy has not expired. Otherwise the account is liquidated. The guaran-

tee account stays nonnegative, that is, γn if chosen by the policyholder must be such that

Jn(γn,Y(tn)) ≤ A(tn). The wealth account is reduced by the amount γn upon withdrawal

and remains nonnegative. That is,

W (t+n ) = max(W (tn)− γn, 0), (10)

where W (t+n ) is the wealth account balance immediately after the withdrawal. It is assumed

that γ0 = 0, i.e., no withdrawals at the start of the contract. Both the wealth and the

guarantee account balance are 0 after contract expiration. That is

W (T+) = A(T+) = 0. (11)

The policyholder’s value function at time t is denoted by V (t,X(t)), t ∈ [0, T ], which

corresponds to the risk-neutral value of all cash flows to the policyholder on or after time t.

The remaining policy value after the final cash flow is thus 0, i.e.,

V (T+,X(T+)) = 0. (12)

3. Calculating the Policyholder’s Value Function

We now calculate the policyholder’s value function V (t,X(t)) as the risk-neutral expected

value of policyholder’s future cash flows at time t ∈ [0, T ]. The risk-neutral valuation of the
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policyholder’s future cash flows can be regarded as the value of the remaining term of the VA

contract from the poliyholer’s perspective. As mentioned in the beginning of Section 2, valua-

tion under the risk-neutral pricing approach assumes that the cash flows may be replicated by

hedging portfolios without market frictions. This may be carried out by a third-party indepen-

dent agent, if not directly by the individual policyholder. In Section 5, we describe a scenario

where a third-party agent with access to frictionless hedging strategies of the policyholder’s

cash flows may earn a profit from the policyholder’s sub-optimal withdrawals.

Following Section 2, the policyholder’s value function on an event date tn can be written

as

V (tn,X(tn)) = Cn(γn,X(tn)) + V (t+n ,X(t+n )), (13)

which by (5) can be further written as

V (tn,X(tn)) = (Pn(γn,Y(tn)) + Vn(t+n ,X(t+n )))1{I(tn)=1} +Dn(Y(tn))1{I(tn)=0}, (14)

since if the policyholder died during last period, the death benefit is the only cash flow to

receive. Taking the risk-neutral expectation EQ
t−n

[·], we obtain the jump condition

V (t−n ,X(t−n )) =

(
(1− qn)

(
Pn(γn,Y(tn)) + V (t+n ,X(t+n ))

)
+ qnDn(Y(tn))

)
1{I(t−n )=1}, (15)

where qn is the risk-neutral probability that the policyholder died over (tn−1, tn), given that

he is alive on the last withdrawal date tn−1. That is,

qn = Q[I(tn) = 0|I(t−n ) = 1]. (16)

Here, we assume that the mortality risk is independent of the market risk under the risk-

neutral probability measure. Under the assumption that the mortality risk is completely

diversifiable, the risk-neutral mortality rate may be indentified with that under the real-world

probability measure and inferred from a historical life table. Also note that the mortality

information over (tn−1, tn] is revealed at tn, thus at t−n such information is not yet available.

This assumption is not a model constraint since all decisions are made only on event dates.

The policy value at t ∈ (tn−1, tn) is given by the expected discounted future policy value

under the risk-neutral probability measure, given by

V (t,X(t)) = EQ
t

[
e−

∫ tn
t r(s)dsV (t−n ,X(t−n ))

]
, (17)

where e−
∫ tn
t r(s)ds is the discount factor. The initial policy value, given by V (0,X(0)), can be

calculated backward in time starting from the terminal condtion (12), using (15) and (17), as

described in Algorithm 1.
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As an illustrative example, we assume r(t) ≡ r, σ(t) ≡ σ and αtot(t) ≡ αtot as constants,

and thus V (t,X(t)) = V (t,W (t)) for t ∈ (tn−1, tn). We now derive the partial differential

equation (PDE) satisfied by the value function V through a hedging argument. We consider a

delta hedging portfolio that, at time t ∈ (tn−1, tn), takes a long position of the value function

V and a short position of W (t)∂WV (t,W (t))
S(t) shares of the index S. Here ∂WV (t,W (t)) ≡

∂V (t,W )
∂W |W=W (t) is the partial derivative of V (t,W ) with respect to the second argument,

evaluated at W (t). Denoting the total value of this portfolio at t ∈ (tn−1, tn) as ΠV (t), the

value of the delta hedging portfolio is given by

ΠV (t) = V (t,W (t))−W (t)∂WV (t,W (t)). (18)

By Ito’s formula and (1), the SDE for ΠV can be obtained as

dΠV (t) =
(
∂tV (t,W (t))− αtotW (t)∂WV (t,W (t)) + 1

2σ
2W (t)2∂WWV (t,W (t))

)
dt, (19)

for t ∈ (tn−1, tn). Since the hedging portfolio ΠV is locally riskless, it must grow at the risk-

free rate r, that is dΠV (t) = rΠV (t)dt. This along with (18) implies that the PDE satisfied

by the value function V (t,W ) is given by

∂tV − rV + (r − αtot)W∂WV +
1

2
σ2W 2∂WWV = 0, (20)

for t ∈ (tn−1, tn) and n = 1, . . . , N . The boundary conditions at tn are specified by (12) and

(15). The valuation formula (17) or the PDE (20) may be solved recursively by following

Algorithm 1 to compute the initial policy value V (0,Y(0)). It should be noted that (17) is

general, and does not depend on the simplifying assumptions made in the PDE derivation.

Algorithm 1 Recursive computation of V (0,X(0))

1: choose a withdrawal strategy Γ
2: initialize V (T+,X(T+)) = 0
3: set n = N
4: while n > 0 do
5: compute the withdrawal amount γn by by (4)
6: compute V (t−n ,X(t−n )) by applying jump condition (15) with appropriate cash flows
7: compute V (t+n−1,X(t+n−1)) by solving (17) or (20) with terminal condition V (t−n ,X(t−n ))
8: n = n− 1
9: end while

10: return V (0,X(0)) = V (0+,X(0+))
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4. Calculating the Insurer’s Liability Function

The GMWDB contract may be considered from the insurer’s perspective by examining

the insurer’s liabilities, given by the risk-neutral value of the cash flows that must be paid

by the insurer in order to fulfill the GMWDB contract. We define the net liability function

L(t,X(t)), t ∈ [0, T ] as the time-t risk-neutral value of all future payments on or after t made

to the policyholder by the insurer, less that of all insurance fee incomes over the same period.

The insurance fees, charged at the rate αins(t), t ∈ [0, T ], is called fair if the total fees

exactly compensate for the insurer’s total liability, such that the net liability is zero at time

t = 0. That is,

L(0,X(0)) = 0. (21)

If αins(t) ≡ αins is a constant, its value can be found by solving (21). The fair insurance

fees represent the hedging cost for the insurer to deliver the GMWDB guarantee to the

policyholder, which is often regarded as the value of the GMWDB rider, at least from the

insurer’s perspective. We emphasize here that this value may not be equal to the added value

of the GMWDB rider to the policyholder’s wealth account, as we will show in Section 5.

On an event date tn, the actual cash flow received by the policyholder is given by (5).

This cash flow is first paid out of the policyholder’s real withdrawal from the wealth account,

which is equal to min(W (tn), γn), the smaller of the nominal withdrawal and the available

wealth. If the wealth account has an insufficient balance, the rest must be paid by the insurer.

If the real withdrawal exceeds the cash flow entitled to the policyholder, the insurer keeps the

surplus. The payment made by the insurer at tn is thus given by

cn(γn,X(tn)) = Cn(γn,X(tn))−min(W (tn), γn). (22)

To compute L(t,X(t)) for all t ∈ [0, T ] we first note that at maturity T , the terminal

condition on L is given by

L(T+,X(T+)) = 0, (23)

i.e., no further liability or insurance fee income after maturity. Analogous to (13) and (15),

the jump condition of L on event date tn is given by

L(tn,X(tn)) = cn(γn,X(tn)) + L(t+n ,X(t+n )) (24)

and

L(t−n ,X(t−n )) =

(
(1− qn)

(
pn(γn,Y(tn)) + L(t+n ,Y(t+n ))

)
+ qndn(Y(tn))

)
1{I(t−n )=1}, (25)

where pn(γn,Y(tn)) and dn(Y(tn)) refer to the insurance payments under I(tn) = 1 and
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I(tn) = 0, respectively. See (22), (5) and (4).

At t ∈ (tn−1, tn), the net liability function is given by the risk-neutral value of the remain-

ing liabilities at t−n less any insurance fee incomes over the period (t, tn), discounted at the

risk-free rate. Specifically, we have

L(t,X(t)) = EQ
t

[
e−

∫ tn
t r(s)dsL(t−n ,X(t−n ))

]
− EQ

t

[ ∫ tn

t
e−

∫ s
t r(u)duαins(s)W (s)ds

]
. (26)

Note that the net liability at t is reduced by expecting to receive insurance fees over time.

Since this reduction decreases with time, the net liability increases with time over (tn−1, tn).

To give an example, we again assume constant r(t) ≡ r, σ(t) ≡ σ, αins(t) ≡ αins, αtot(t) ≡
αtot. Under these simplifying assumptions we have L(t,X(t)) = L(t,W (t)) for t ∈ (tn−1, tn).

To derive the PDE satisfied by L(t,W ), consider a delta hedging portfolio that, at time

t ∈ (tn−1, tn), consists of a long position in the net liability function L and a short position

of W (t)∂WL(t,W (t))
S(t) shares of the index S. The value of the delta hedging portfolio, denoted as

ΠL(t), is given by

ΠL(t) = L(t,W (t))−W (t)∂WL(t,W (t)). (27)

By Ito’s formula and (1), we obtain the SDE for ΠL as

dΠL(t) =
(
∂tL(t,W (t))− αtotW (t)∂WL(t,W (t)) + 1

2σ
2W (t)2∂WWL(t,W (t))

)
dt, (28)

where t ∈ (tn−1, tn). Since the hedging portfolio ΠL is locally riskless and must grow at the

risk-free rate r, as well as increase with the insurance fee income at rate αinsW (t) (see remarks

after (26)), we must also have dΠL(t) =
(
rΠL(t) + αinsW (t)

)
dt. This along with (27) implies

that the PDE satisfied by the value function L(t,W ) is given by

∂tL− αinsW − rL+ (r − αtot)W∂WL+
1

2
σ2W 2∂WWL = 0, (29)

for t ∈ (tn−1, tn). The initial net liability can thus be computed by recursively solving (26) or

(29) from terminal and jump conditions (23) and (25), as described in Algorithm 2.

5. The Wealth Manager’s Value Function and Optimal Withdrawals

In the previous sections, the withdrawal strategy Γ has been assumed to be given. The

withdrawal strategy serves as a control sequence affecting the policyholder’s value function

and the insurer’s liability function. These withdrawals may thus be chosen to maximize either

of these functions, leading to two distinct withdrawal strategies. In this section we formulate

these two strategies and discuss their relations. In particular, we identify the wealth manager’s

value function that connects the two perspectives and the implications.
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Algorithm 2 Recursive computation of L(0,X(0))

1: choose a withdrawal strategy Γ
2: initialize L(T+,X(T+)) = 0
3: set n = N
4: while n > 0 do
5: compute the withdrawal amount γn by (4)
6: compute L(t−n−1,X(t−n−1)) by applying jump condition (25) with appropriate cash flows
7: compute L(t+n−1,X(t+n−1)) by solving (26) or (29) with terminal condition L(t−n ,X(t−n ))
8: n = n− 1
9: end while

10: return L(0,X(0)) = L(0+,X(0+))

5.1. The wealth manager’s value function

We establish the relationship between the policy value V and the net liability L by defining

the process

M(t,X(t)) := L(t,X(t)) +W (t)− V (t,X(t)), (30)

for t ∈ [0, T ]. From (11) and (12) we obtain

M(T+,X(T+)) = 0, (31)

as the terminal condition for M . The jump condition for M can be obtained from (10), (13),

(24) and (22) as

M(tn, X(tn)) = M(t+n ,X(t+n ))), (32)

and further more,

M(t−n , X(t−n )) = (1− qn−1)M(t+n ,X(t+n )))1{I(t−n )=1}. (33)

From (17) and (26) we find the recursive relation for M as,

M(t,X(t)) = EQ
t

[
e−

∫ tn
t r(s)dsM(t−n ,X(t−n ))

]
+W (t)− EQ

t

[
e−

∫ tn
t r(s)dsW (tn)

]
−EQ

t

[ ∫ tn
t e−

∫ s
t r(u)duαins(s)W (s)ds

]
.

(34)

Note that the second and third lines in (34) can be identified with the time-t risk-neutral

value of management fees over (t, tn). To see this, we first note that the difference of the two

terms in the second line is the time-t risk-neutral value of the total fees charged on the wealth

account over (t, tn), and the expectation in the third line is the time-t risk-neutral value of

the insurance fees over the same period.

In lights of (31), (33) and (34), the process M(t,X(t)), t ∈ [0, T ] defined by (30) is precisely

12



the time-t risk-neutral value of future management fees, or wealth manager’s value function.

From (30), the policy value may be written as

V (t,X(t)) = W (t) + L(t,X(t))−M(t,X(t)), (35)

i.e., the sum of the wealth and the value of the GMWDB rider, less the the wealth manager’s

value. At t = 0, this gives

V (0,X(0)) = W (0) + L(0,X(0))−M(0,X(0)). (36)

Therefore, a withdrawal strategy that maximizes the insurer’s total net liability L(0,X(0))

in general is sub-optimal in maximizing the policyholder’s total value V (0,X(0)), since the

wealth manager’s total value M(0,X(0)) depends on the withdrawals. The fair fee condition

(21) becomes

V (0,X(0)) = W (0)−M(0,X(0)), (37)

as in contrast to the V (0) = W (0) condition often seen in the literature, when no management

fees are charged.

5.2. Formulation of two optimization problems

We first formulate the policyholder’s value maximization problem, i.e., maximizing the

initial policy value V (0,X(0)) by optimally choosing the sequence γn under I(tn) = 1 for

n = 1, . . . , N − 1. Following the principle of dynamic programming, this is accomplished by

choosing the withdrawal γn as

γn = ΓV (tn,Y(tn)) = arg max
γ∈A

{
Pn(γ,Y(tn)) + V

(
t+n ,X(t+n |X(tn), γ)

)}
(38)

in the admissible set A = {γ : γ ≥ 0, A(t+n |X(tn), γ) ≥ 0}. Here, we used X(t+n |X(tn), γ)

and A(t+n |X(tn), γ) to denote the state variables X and guarantee account balance A after

withdrawal γ is made, given the value of the state variables X before the withdrawal. At any

withdrawal time tn the policyholder chooses the withdrawal γ ∈ A to maximize the sum of

the payment Pn(γ,Y(tn)) received and the present value of the remaining term of the policy

V (t+n ,X(t+n )). The strategy ΓV given by (38) is called the value maximization strategy.

On the other hand, the optimization problem from the insurer’s perspective considers the

most unfavourable situation for the insurer. That is, by making suitable choices of γn’s, the

policyholder attempts to maximize the net initial liability function L(0,X(0)). Even though

a policyholder has little reason to pursue such a strategy, the fair fee rate under this strategy

is guaranteed to cover the hedging cost of the GMWDB rider regardless of the withdrawal

strategy of the policyholder (assuming the insurer can perfectly hedge the market risk). The
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withdrawal γn under I(tn) = 1 for this strategy is given by

γn = ΓL(tn,Y(tn)) = arg max
γ∈A

{
pn(γ,Y(tn)) + L

(
t+n ,X(t+n |X(tn), γ)

)}
, (39)

i.e., the sum of the payment made by the insurer and the net liability of the remaining term of

the contract is maximized. The strategy ΓL given by (39) is called the liability maximization

strategy.

5.3. Implications

We now consider the two strategies in an idealized world where market risk can be com-

pletely hedged with neglegible market frictions as compared with the management fees. For

simplicity, we avoid considering the mortality risk in this subsection by assuming zero mor-

tality rates. As is mentioned in the previous subsection, assuming that the fair insurance fee

follows from the liability maximization strategy, the insurer is guaranteed a nonnegative profit,

regardless of the actual withdrawal strategies of the policyholder. If the policyholder behaves

differently from this strategy, in particular, if he follows the value maximization strategy, the

insurer generally makes a positive profit.

On the other hand, consider the situation where a middle agent purchases the GMWDB

policy from the insuerer on behalf of the policyholder. The agent agrees to fulfill all the

contract liabilities to the policyholder as implied by the policyholder’s withdrawal behavior,

but handles the withdrawals following his own optimal strategy. In particular, the agent

follows the value maximization strategy when making withdrawals from the insurer, in the

meantime hedge any market risk associated with the contract, e.g., through market index

tracking ETFs at much lower costs than the typical management fees charged by a mutual fund

manager. Then regardless of the policyholder’s withdrawal behavior, the agent always makes

a nonnegative profit. If the policyholder behaves differently from the value maximization

strategy, he receives a value less than the maximal policy value received by the agent, who

makes a positive profit out of the policyholder’s sub-optimal behavior. Given that the agent

carries out withdrawals that maximize the value rather than the cost to the insurer, the

insurer in turn can afford to charge a less expensive fee than those implied by the liability

maximization strategy, leading to more value for the policyholder. This seemingly win-win

situation comes partly at the loss of the wealth manager, who now expect to receive less

management fees. In this case the agent in effect reduces the market friction represented by

the management fees by helping to improve the policyholder’s value, and earns a profit.

6. Numerical Examples

To demonstrate the effect of management fees on the fair fees of GMWDB contracts under

different withdrawal strategies, we carry out in this section several numerical experiments.
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We investigate how the presence of management fees will lead to different fair fees for the

two withdrawal strategies studied in previous sections under different market conditions and

contract parameters.

6.1. Setup of the experiments

For illustration purposes, we assume a simple GMWDB contract as specified by (6), (9) as

well as constant r, σ, αm and αins so that the PDEs (20) and (29) hold, and set all mortality

rates to zero for simplicity. We consider different contractual scenarios and calculate the fair

fees implied by (21) under the withdrawal strategies given in Section 5.

It is assumed that the wealth and the guarantee accounts start at W (0) = A(0) = 1. The

maturities of the contracts range from 5 to 20 years, with annual contractual withdrawals

evenly distributed over the lifetime of the contracts. The first withdrawal occurs at the end

of the first year and the last at the maturity. The management fee rate ranges from 0% up

to 2%.

We consider several investment environments with the risk-free rate r at levels 1% and

5%, and the volatility of the index σ at 10% and 30%, to represent different market conditions

such as low/high growth and low/high volatility scenarios. In addition, the penalty rate β

may take values at 10% or 20%.

We compute the initial policy value V (0,Y(0)) as well as the initial net liability L(0,X(0))

at time 0 numerically by following Algorithms 1 and 2 simultaneously. The withdrawal strate-

gies ΓL and ΓV are considered separately. The PDEs (20) and (29) are solved using Crank-

Nicholson finite difference method (Crank and Nicolson [8], Hirsa [13]) with appropriate ter-

minal and jump conditions for both functions under both strategies. This leads to the initial

values and liabilities V (0,X(0); ΓL), L(0,X(0); ΓL), V (0,X(0); ΓV ) and L(0,X(0); ΓV ) under

both strategies. Here, we made the dependence of these functions on the strategies explicit.

The fair fee rates under both strategies were obtained by solving (21) using a standard root-

finding numerical scheme.

6.2. Results and implications

The fair fees and corresponding total policy values are shown in Figures 1 and 2 for two

market conditions: a low interest rate market with high volatility (r = 1%, σ = 30%) and a

high interest rate market with low volatility (r = 5%, σ = 10%), respectively. Fair fee rates

obtained for all market conditions and contract parameters and the corresponding policy

values can be found in Tables 1 through 4.

We first observe from these numerical results that the fair fee rate implied by the liability

maximization strategy is always higher, and the corresponding policyholder’s total value al-

ways lower, than those implied by the value maximization strategy, unless management fees
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are absent, in which case these quantities are equal. These are to be expected from the def-

initions of the two strategies. We also note that under the market condition of low interest

rate with high volatility, a much higher insurance fee rate is required than under the market

condition of high interest rate with low volatility, for the obvious reason that under adverse

market conditions, the guarantee is more valuable. Moreover, a higher penalty rate results

in a lower insurance fee since a higher penalty rate discourages the policyholder from making

more desirable withdrawals that exceed the contracted values.

Furthermore, the results show that under most market conditions or contract specifica-

tions, the fair insurance fee rate obtained is highly sensitive to the management fee rate

regardless of the withdrawal strategies, as seen from Figures 1 and 2. In particular, the fair

fee rate implied by the liability maximization strategy always increases with the management

fee rate, since the management fees cause the wealth account to decrease, leading to higher

liability for the insurer to fulfill. On the other hand, the fair fee rate implied by the value

maximization strategy first increases then decreases with the management fee rate, since at

high management fee rates, a rational policyholder tends to withdraw more and early to avoid

the management fees, which in turn reduces the liability and generates more penalty incomes

for the insurer.

A major insight from the numerical results is that with increasing management fees, the

value maximization withdrawals of a rational policyholder deviates more from the liability

maximization withdrawals assumed by the insurer. In particular, it is seen by examining

Figures 1 and 2 that the fair fee rates implied by the two strategies differ more significantly

under the following conditions:

• longer maturity T ,

• lower penalty rate β,

• higher interest rate r, and

• higher management fee rate αm.

Moreover, careful examination of results listed in Tables 1 and 2 reveals that the index volatil-

ity σ does not seem to contribute significantly to this discrepancy. These observations are

intuitively reasonable: The contributors listed above all imply that the wealth manager’s to-

tal value M(0) will be higher. There are more incentives to withdraw early to achieve higher

policy value in the form of reduced management fees. The corresponding differences between

the policyholder’s values follow similar patterns. Of particular interest is that in some cases,

as shown in Figure 2, the fair fee rate implied by maximizing policyholder’s value can become

negative. This implies that the policyholder would want to withdraw more and early due to

high management fees to such an extent, that the penalties incurred exceed the total value of
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the GMWDB rider. On the other hand, the fair fee rate implied by maximizing the liability

is always positive.

7. Conclusions

Determining accurate hedging costs of VA guarantees is a significant issue for VA providers.

While the effect of management fees on policyholder’s withdrawal behaviors is typically ig-

nored in the VA literature, it was demonstrated in this article that this effect on the pricing

of GMWDB contract can be significant. As a form of market friction, management fees

can affect policyholders’ withdrawal behaviors, causing large deviations from the “optimal”

(liability maximization) withdrawal behaviors often assumed in the literature.

Two different policyholder’s withdrawal strategies were considered: liability maximization

and value maximization when management fees are present. We demonstrated that these two

withdrawal strategies imply different fair insurance fee rates, where maximizing policy value

implies lower fair fees than those implied by maximizing liability, or equivalently, maximiz-

ing the “total value” of the contract, which represents the maximal hedging costs from the

insurer’s perspective.

We identify the difference between the initial investment plus the value of the guarantee

and the total value of the policyholder as the wealth manager’s total value, which causes the

discrepancy between the two withdrawal strategies. We further identify a number of factors

that contribute to this discrepancy through a series of illustrating numerical experiments.

Our findings identify the management fees as a potential cause of discrepancy between the

fair fee rates implied by the liability maximization strategy, often assumed from the insurer’s

perspective for VA pricing, and the prevailing market rates for VA contracts with GMWDB

or similar riders.
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Figure 1: Fair insurance fee rates and policy values as a function of management fee rates αm for risk-free rate
r = 1% and volatility σ = 30%, for penalty rates β = 10% , 20% and maturities T = 5 , 10 , 20 years. The left
axis and dark plots refer to the fair fees in percentage; The right axis and gray plots refer to the policy values.
Legends across all plots are shown in the upper left panel.
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Figure 2: Fair insurance fee rates and policy values as a function of management fee rates αm for risk-free rate
r = 5% and volatility σ = 10%, for penalty rates β = 10% , 20% and maturities T = 5 , 10 , 20 years. The left
axis and dark plots refer to the fair fees in percentage; The right axis and gray plots refer to the policy values.
Legends across all plots are shown in the upper left panel.
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Table 1: Fair fee rate αins (%) based on the liability maximization strategy ΓL.

Parameters αm

r(%) σ(%) β(%) T 0% 0.2% 0.4% 0.6% 0.8% 1% 1.2% 1.4% 1.6% 1.8% 2%

1 10 10 5 3.08 3.48 3.96 4.59 5.41 6.65 8.66 12.18 17.67 23.53 29.92
10 1.66 1.92 2.25 2.66 3.21 3.97 5.08 6.77 9.26 12.17 15.31
20 0.82 0.97 1.17 1.43 1.77 2.22 2.83 3.68 4.81 6.19 7.71

20 5 3.08 3.47 3.95 4.55 5.34 6.48 8.39 12.01 17.66 23.55 29.92
10 1.66 1.91 2.23 2.62 3.13 3.83 4.88 6.60 9.20 12.17 15.31
20 0.81 0.96 1.16 1.40 1.71 2.13 2.72 3.57 4.74 6.17 7.71

30 10 5 15.05 15.92 16.92 18.02 19.27 20.70 22.37 24.43 26.88 29.91 33.69
10 8.38 8.93 9.55 10.22 10.98 11.85 12.84 13.98 15.34 16.93 18.81
20 4.32 4.64 5.00 5.41 5.87 6.39 6.98 7.66 8.45 9.35 10.37

20 5 13.99 14.82 15.73 16.80 18.01 19.40 21.06 23.11 25.64 28.86 32.95
10 7.85 8.38 8.97 9.63 10.36 11.22 12.22 13.38 14.74 16.43 18.41
20 4.00 4.33 4.69 5.10 5.55 6.07 6.66 7.34 8.11 9.01 10.02

5 10 10 5 0.43 0.47 0.50 0.55 0.59 0.64 0.69 0.75 0.81 0.88 0.96
10 0.18 0.20 0.21 0.23 0.25 0.28 0.30 0.33 0.36 0.39 0.43
20 0.08 0.09 0.10 0.11 0.12 0.13 0.15 0.16 0.18 0.20 0.22

20 5 0.40 0.44 0.48 0.52 0.57 0.62 0.68 0.74 0.81 0.88 0.96
10 0.11 0.12 0.14 0.16 0.18 0.20 0.22 0.25 0.28 0.31 0.35
20 0.03 0.04 0.04 0.05 0.05 0.06 0.07 0.08 0.09 0.10 0.12

30 10 5 5.33 5.48 5.65 5.81 5.99 6.17 6.35 6.55 6.75 6.96 7.17
10 2.91 3.02 3.12 3.23 3.35 3.47 3.60 3.73 3.86 4.01 4.16
20 1.58 1.65 1.74 1.82 1.91 2.00 2.10 2.21 2.32 2.43 2.55

20 5 4.97 5.13 5.28 5.44 5.61 5.79 5.97 6.15 6.35 6.55 6.76
10 2.27 2.35 2.43 2.52 2.61 2.71 2.81 2.91 3.02 3.13 3.25
20 1.08 1.13 1.19 1.24 1.31 1.37 1.43 1.50 1.58 1.65 1.73
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Table 2: Fair fee rate αins (%) based on the policy value maximization strategy ΓV .

Parameters αm

r(%) σ(%) β(%) T 0% 0.2% 0.4% 0.6% 0.8% 1% 1.2% 1.4% 1.6% 1.8% 2%

1 10 10 5 3.08 3.47 3.96 4.57 5.36 6.57 8.55 12.12 17.66 23.55 29.93
10 1.66 1.92 2.23 2.61 3.13 3.81 4.86 6.44 8.99 12.11 15.30
20 0.82 0.96 1.09 1.21 1.33 1.44 1.50 1.59 1.65 1.70 1.81

20 5 3.08 3.47 3.95 4.55 5.34 6.48 8.38 12.01 17.66 23.55 29.92
10 1.66 1.91 2.23 2.62 3.12 3.80 4.84 6.56 9.19 12.17 15.31
20 0.81 0.96 1.16 1.39 1.67 2.05 2.60 3.43 4.65 6.14 7.70

30 10 5 15.05 15.92 16.91 18.00 19.25 20.66 22.32 24.34 26.79 29.80 33.58
10 8.38 8.93 9.53 10.19 10.93 11.77 12.72 13.81 15.11 16.65 18.51
20 4.32 4.63 4.94 5.27 5.59 5.90 6.20 6.49 6.76 6.99 7.16

20 5 13.99 14.82 15.73 16.80 18.00 19.39 21.04 23.09 25.62 28.84 32.93
10 7.85 8.38 8.96 9.62 10.35 11.20 12.19 13.34 14.70 16.38 18.37
20 4.00 4.32 4.68 5.08 5.53 6.04 6.61 7.27 8.04 8.92 9.95

5 10 10 5 0.43 0.47 0.50 0.54 0.58 0.62 0.67 0.71 0.76 0.81 0.80
10 0.18 0.19 0.21 0.22 0.23 0.22 0.17 0.07 -0.02 -0.14 -0.26
20 0.08 0.09 0.08 0.04 -0.09 -0.23 -0.37 -0.51 -0.64 -0.79 -0.93

20 5 0.40 0.44 0.48 0.52 0.57 0.62 0.68 0.74 0.81 0.88 0.96
10 0.11 0.12 0.14 0.15 0.17 0.19 0.20 0.22 0.23 0.25 0.26
20 0.03 0.04 0.04 0.04 0.03 0.02 -0.00 -0.10 -0.24 -0.38 -0.53

30 10 5 5.33 5.48 5.64 5.79 5.95 6.11 6.27 6.43 6.60 6.75 6.94
10 2.91 3.01 3.10 3.18 3.26 3.34 3.41 3.47 3.53 3.58 3.60
20 1.58 1.64 1.68 1.72 1.74 1.75 1.75 1.74 1.74 1.73 1.71

20 5 4.97 5.13 5.28 5.44 5.61 5.78 5.96 6.14 6.32 6.51 6.70
10 2.27 2.35 2.43 2.51 2.59 2.67 2.74 2.82 2.88 2.94 3.00
20 1.08 1.13 1.18 1.22 1.23 1.24 1.23 1.21 1.18 1.14 1.09
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Table 3: Total policy value V (0,X(0); ΓL) based on the liability maximization strategy ΓL.

Parameters αm

r(%) σ(%) β(%) T 0% 0.2% 0.4% 0.6% 0.8% 1% 1.2% 1.4% 1.6% 1.8% 2%

1 10 10 5 1.00 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.97 0.97 0.97
10 1.00 0.99 0.98 0.97 0.97 0.96 0.95 0.95 0.95 0.95 0.95
20 1.00 0.98 0.96 0.95 0.94 0.92 0.92 0.91 0.90 0.90 0.90

20 5 1.00 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.97 0.97 0.97
10 1.00 0.99 0.98 0.97 0.96 0.96 0.95 0.95 0.95 0.95 0.95
20 1.00 0.98 0.96 0.95 0.93 0.92 0.91 0.91 0.90 0.90 0.90

30 10 5 1.00 1.00 0.99 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.97
10 1.00 0.99 0.99 0.98 0.97 0.97 0.96 0.96 0.96 0.95 0.95
20 1.00 0.99 0.97 0.96 0.95 0.94 0.93 0.93 0.92 0.91 0.91

20 5 1.00 1.00 0.99 0.99 0.98 0.98 0.98 0.98 0.97 0.97 0.97
10 1.00 0.99 0.99 0.98 0.97 0.97 0.96 0.96 0.95 0.95 0.95
20 1.00 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.92 0.91 0.91

5 10 10 5 1.00 0.99 0.99 0.98 0.98 0.97 0.96 0.96 0.95 0.95 0.94
10 1.00 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.90
20 1.00 0.98 0.95 0.93 0.91 0.89 0.88 0.86 0.84 0.83 0.82

20 5 1.00 0.99 0.99 0.98 0.98 0.97 0.96 0.96 0.95 0.95 0.94
10 1.00 0.99 0.98 0.96 0.95 0.94 0.93 0.92 0.91 0.90 0.89
20 1.00 0.97 0.95 0.93 0.91 0.89 0.87 0.85 0.83 0.81 0.80

30 10 5 1.00 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.96 0.96
10 1.00 0.99 0.98 0.98 0.97 0.96 0.95 0.95 0.94 0.93 0.93
20 1.00 0.98 0.97 0.96 0.94 0.93 0.92 0.91 0.90 0.89 0.88

20 5 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.96 0.95 0.95
10 1.00 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.91
20 1.00 0.98 0.96 0.94 0.92 0.90 0.89 0.87 0.86 0.84 0.83
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Table 4: Total policy value V (0,X(0); ΓV ) based on the policy value maximization strategy ΓV .

Parameters αm

r(%) σ(%) β(%) T 0% 0.2% 0.4% 0.6% 0.8% 1% 1.2% 1.4% 1.6% 1.8% 2%

1 10 10 5 1.00 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.97 0.97 0.97
10 1.00 0.99 0.98 0.97 0.97 0.96 0.95 0.95 0.95 0.95 0.95
20 1.00 0.98 0.97 0.96 0.95 0.95 0.94 0.94 0.94 0.93 0.93

20 5 1.00 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.97 0.97 0.97
10 1.00 0.99 0.98 0.97 0.96 0.96 0.95 0.95 0.95 0.95 0.95
20 1.00 0.98 0.96 0.95 0.93 0.92 0.91 0.91 0.90 0.90 0.90

30 10 5 1.00 1.00 0.99 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.97
10 1.00 0.99 0.99 0.98 0.97 0.97 0.97 0.96 0.96 0.95 0.95
20 1.00 0.99 0.98 0.97 0.96 0.95 0.95 0.94 0.94 0.94 0.93

20 5 1.00 1.00 0.99 0.99 0.98 0.98 0.98 0.98 0.97 0.97 0.97
10 1.00 0.99 0.99 0.98 0.97 0.97 0.96 0.96 0.95 0.95 0.95
20 1.00 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.92 0.91 0.91

5 10 10 5 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.96 0.95 0.95
10 1.00 0.99 0.98 0.97 0.96 0.95 0.94 0.94 0.94 0.93 0.93
20 1.00 0.98 0.96 0.94 0.94 0.93 0.93 0.93 0.93 0.92 0.92

20 5 1.00 0.99 0.99 0.98 0.98 0.97 0.96 0.96 0.95 0.95 0.94
10 1.00 0.99 0.98 0.96 0.95 0.94 0.93 0.92 0.91 0.91 0.90
20 1.00 0.97 0.95 0.93 0.91 0.89 0.88 0.87 0.86 0.86 0.86

30 10 5 1.00 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.97 0.96 0.96
10 1.00 0.99 0.98 0.98 0.97 0.97 0.96 0.96 0.95 0.95 0.95
20 1.00 0.99 0.97 0.97 0.96 0.95 0.94 0.94 0.94 0.93 0.93

20 5 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.96 0.95 0.95
10 1.00 0.99 0.98 0.97 0.96 0.95 0.94 0.94 0.93 0.92 0.92
20 1.00 0.98 0.96 0.94 0.93 0.92 0.91 0.90 0.89 0.88 0.88
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