
A First Look at Android Apps’ Third-party
Resources Loading

Hina Qayyum1[0000−0003−2431−3039], Muhammad Salman1[0000−0003−0722−1917],
I Wayan Budi Sentana1[0000−0003−3559−5123], Duc Linh Giang

Nguyen1[0000−0001−7331−9563], Muhammad Ikram1[0000−0003−2113−3390]?, Gareth
Tyson2[0000−0003−3010−791X], and Mohamed Ali Kaafar1[0000−0003−2714−0276]

1 Macquarie University, NSW 2109, Australia
2 Hong Kong University of Science and Technology

Abstract. Like websites, mobile apps import a range of external re-
sources from various third-party domains. In succession, the third-party
domains can further load resources hosted on other domains. For each
mobile app, this creates a dependency chain underpinned by a form of
implicit trust between the app and transitively connected third-parties.
Hence, a such implicit trust may leave apps’ developers unaware of what
resources are loaded within their apps. In this work, we perform a large-
scale study of dependency chains in 7,048 free Android mobile apps. We
characterize the third-party resources used by apps and explore the pres-
ence of potentially malicious resources loaded via implicit trust. We find
that around 94% of apps (with a number of installs greater than 500K)
load resources from implicitly trusted parties. We find several different
types of resources, most notably JavaScript codes, which may open the
way to a range of exploits. These JavaScript codes are implicitly loaded
by 92.3% of Android apps. Using VirusTotal, we classify 1.18% of third-
party resources as suspicious. Our observations raise concerns for how
apps are currently developed, and suggest that more rigorous vetting of
in-app third-party resource loading is required.

1 Introduction

Mobile apps have become extremely popular [54], however, recently there has
been a flurry of research [25] [31] exposing how many of these apps carry out
misleading or even malicious activities. These acts range from low-risk (e.g.,
usage of services and inter process communication which may drain the battery,
CPU or memory) to high-risk (e.g., harvesting data and ex-filtrating to third-
parties [31].

We are interested in understanding the root source of this suspicious (or
malicious) activity. Past work has treated this question as trivial—naturally,
the root source of suspicious activity is the app’s developer [25]. However, in
this paper, we counter this assumption and shed light on the true complexity of
suspicious app activity. We focus on the use of dynamically loaded third-party
resources within apps. Mobile apps often load these resources from a range of
third-party domains which include, for example, ad providers, tracking services,

? Corresponding author: muhammad.ikram@mq.edu.au

content distribution networks (CDNs) and analytics services. Although loading
these resources is a well known design decision that establishes explicit trust be-
tween mobile apps and the domains providing such services, it creates complexity
in terms of attribution. For example, it is not clear whether an app developer
knows the third party resources are suspicious. This is further complicated by
the fact that certain third-party code can further load resources from other do-
mains. This creates a dependency chain (see Figure 1 for example), where the
first-party app might not even be aware of the resources being loaded during its
execution. This results in a form of implicit trust between mobile apps and any
domains loaded further down the chain.

Consider the example BBC News [4] Android mobile app (cf. Figure 1) which
loads JavaScript code from the widgets.com domain, which, upon execution
loads additional content from another third-party, ads.com. Here, BBC News as
the first-party, explicitly trusts widgets.com, but implicitly trusts ads.com. This
can be represented as a simple dependency chain in which widgets.com is at
level 1 and ads.com is at level 2 (see Figure 1). Past work tends to ignore this,
instead, collapsing these levels into a single set of third-parties [21] [41].

Fig. 1: Example of Android App dependency chain, including malicious third-
party (in red). Here, Dependency Level 1 and Dependency Level ≥ 2 represent
resources loaded from explicitly and implicitly trusted parties, respectively.

This, however, overlooks a vital security aspect for resources loaded by mobile
apps. For instance, it creates a significant security challenge, as mobile apps lack
visibility on resources loaded further down their domain’s dependency chain. The
dynamic nature of the content is loaded and the wide adoption of in-path traffic
alterations [45][16] further complicates the issue. The potential threat should not
be underestimated as errant active content (e.g., JavaScript code) opens the way
to a range of further exploits, e.g., Layer-7 DDoS attacks [42] or malvertising
[46] and ransomware campaigns [33].

In this work, we study dependency chains in Android apps. We use static
and dynamic analysis to extract the URLs requested by apps and leverage our
distributed crawling framework to retrieve apps’ resource dependency chains.
We then use VirusTotal API [32] to augment apps’ dependency chains to char-
acterize any suspicious resource loading. By analyzing 7,048 apps, we explore
their implicit dependencies on third parties; we find that over 98.2% of apps

2

have dependency chains > 1, and therefore rely on an implicit trust model (§ 3).
Although the majority (84.32%) of these have short chains of 4 and below lev-
els, a notable minority (5.12%) have chains exceeding 5 levels. We also analyze
different types of resource types and interestingly find JavaScript codes to be
implicitly loaded by 92.3% of Android apps. This is perhaps due to app develop-
ers are unaware of the risks of implicitly trusting active content like JavaScript
codes imported in WebView. Moreover, we inspect the categories of third-parties
and find the predominance of the “Business” category across all dependency lev-
els i.e., 39.34% of all loaded resources at level 1, which increases to 40.54% at
level 3, then to 51.4%, and so on. We also investigate the most occurring im-
plicit third-parties and find google-analytics.com and doubleclick.net to
be imported by 83.8% and 79.41%, respectively.

Although the above findings expose the analyzed Android apps to a new
attack surface (as implicit trust makes it difficult for Android apps’ owners or
developers to vet third-parties), arguably, this alone does not create a security
violation. Hence, we proceed to test whether or not these chains contain any
malicious or suspicious third parties. To this end, we classify third-party domains
into innocuous vs suspicious. Using several VirusTotal thresholds (which we
refer to as VTscore (explained in § 2.5)), we find that a considerable fraction
of the third-parties involved in the dependency chains is classified as suspicious.
These perform suspicious activities such as requesting sensitive resources and
sending HTTP(S) requests to known malicious domains. We find that 1.18%
of third-parties are suspicious with a VTscore ≥ 10 (i.e. at least 10 AntiVirus
services flagged them as malicious domains). This fraction naturally decreases
when increasing the VTscore, for example with the VTscore of ≥ 40 the number
of suspicious websites is 0.16% only. We then further investigate JavaScript code
and find that more than half of the code (51%) implicitly trusted (i.e., loaded at
trust level 2 and beyond) have a VTscore ≥ 30 which suggests high confidence
in the security assessment. Finally, to foster further research, we release the
dataset and scripts used in this paper to the research community: https://

mobapptrust.github.io/.

2 Background and Methodology

Figure 2 presents an overview of the steps involved in analyzing apps’ resource
dependency.

Google Play
Crawler

Dynamic Analysis

Static Analysis

∪
Resource

Dependency
Crawler

Data
Augmentation
and analysis

Apps
Collection

Apps URL Extraction
Extracting Apps

Resource
Dependency Chains

Analyzing Apps
Dependency

chains

Fig. 2: Overview of our measurement methodology.

3

https://mobapptrust.github.io/
https://mobapptrust.github.io/

2.1 Third-party ecosystem

Third-parties extend an app’s capabilities by providing useful content (e.g.,
video, audio) and ways (e.g., libraries and codes) to track users and deliver
advertisements. Third-party services such as content delivery networks (CDNs),
advertisers, and trackers have been around for years [38]. Recent years have
seen apps relying on a wide range of third-party mobile ad and tracking ser-
vices [31][48], typically fetched from ad aggregators such as doubleclick.net

and AdMob through the ad libraries embedded in apps. Generally, an app de-
veloper registers with an ad aggregator, who provides the developer with a de-
veloper ID and an ad library which will be embedded in the app to fetch ads
from other third-parties advertisers. The app developer is then paid by the ad
provider based on the number of ad clicks or impressions, or both.

In the context of mobile advertising, the advertisers are parties who wish
to advertise their products, the publishers are mobile applications (or their de-
velopers) that bring advertisements to the users. Ad networks or aggregators
link the publishers to the advertisers, being paid by the latter and paying the
former. Tapping on advertisements may lead users to content on Google Play
or to web links. This often happens through a chain of several webpage redirec-
tions [30][40]. We generally refer to all these URLs in the webpage redirections
as the redirection chain and the final webpage as the landing page. Ad networks
themselves may participate in complex relationships with each other [30]. Cer-
tain parties, such as ad networks, run so-called ad exchanges where a given ad
space is auctioned among several bidding ad networks so as to maximize prof-
its for the publishers [14]. Ad networks also have syndication relationships with
each other: an ad network assigned to fill a given ad space may delegate that
space to another network. Such delegation can happen multiple times through
a chain of ad networks and is visible in the redirection chains.

2.2 Collecting app metadata from Google Play

It is first necessary to collect a representative sample of mobile apps. As we wish
to study the infiltration by suspicious third-parties, we strive to obtain a set of
’mainstream’ apps (rather than fringe or malware related apps). Thus, we imple-
ment a Google Play crawler. This first obtains the app ID (or package name) for
the top 50 apps listed within 10 Google Play categories: game, entertainment,
business, communication, finance, tools, productivity, personalization, news &
magazines, and education. Our crawler follows a breadth-first-search approach
for any other app considered as “similar” by Google Play and for other apps
published by the same developer. For each (free) app, we collect its metadata
and executables (apks). We collect all metadata: number of downloads, category,
average rating, negative/positive reviews, and developer’s website.

We collected 10,000 free apps from Google Play of which we successfully
analyze 7,048 apps. Due to obfuscation and protection against source code our
static analysis tools (further detailed below in § 2.3) failed to decompile 2,469
apps. Similarly, 483 require login to interact with the apps’ declared activities,

4

thus our dynamic analysis tools failed to analyze them. Overall, our corpus
consists of 7,048 apps distributed across 27 different categories (collected in
Dec 2018). For context, Figure 3 presents the number of apps we have with
different ratings and a number of downloads. Our dataset also consists of apps
that receive high user ratings: 70.7% of the apps have more than 4-star ratings
and 72% of them have 500K+ downloads as depicted in Figure 3. These apps
have 364,999,376 downloads (the sum of lower values of the installs). We argue
this constitutes a reasonable sample of apps considered to be both mainstream
and non-malicious in nature.

0
500

1000
1500
2000

1+ 10
+

50
+

10
0+ 1K

+
5K

+
10

K+
50

K+

10
0K

+

50
0K

+
1M

+
5M

+
10

M
+
50

M
+

10
0M

+

50
0M

+

10
00

M
+

50
00

M
+

of

 A
pp

s

●

●

1

2

3

4

5

1+ 10
+

50
+

10
0+ 1K

+
5K

+
10

K+
50

K+

10
0K

+

50
0K

+
1M

+
5M

+
10

M
+
50

M
+

10
0M

+

50
0M

+

10
00

M
+

50
00

M
+

of Installs

A
vg

. A
pp

s
R

at
in

g

Business Communication Entertainment Finance Game Other

1

2

3

4

5

0
50

0
10

00
15

00

of Apps

●

Fig. 3: An overview of analyzed apps’ install and ratings on Google Play.

2.3 Extracting apps’ resource dependency chains

It is next necessary to extract the third-party (web) resources utilized by each
analyzed app. As depicted in Figure 2, we extract this set of URLs/domains in
two ways: First, for each app, we use the Google Play Unofficial Python API [9]
to download each app’s executable, and use ApkTool [3]–a static analysis tool–
to decompile them. We then leverage regular expressions to comprehensively
search and extract embedded URLs/domains in the decompiled source code.
Second, we use a dedicated testbed, composed of a smartphone that connects to
the Internet via a computer configured as a WiFi access point (AP) with dual-
stack support. The WiFi AP runs MITMProxy [10] to intercept all the traffic
being transmitted between the mobile device and the Internet. This allows us
to observe the resources loaded (or URLs/domains requested) by each app. To
automate the execution of apps in our corpus, we leverage MonkeyRunner [11] to
launch an app in our test mobile phones and to interact with an app by emulating
user interactions such as clicking and swapping on all activities defined in the
AndroidManifest.xml files. We exclude 483 apps from our analysis as they have
only login activities defined in the AndroidManifest.xml files. To complete the
execution and rendering of each activity, we enforce a 20-second waiting time
and 400 seconds runtime session per app executing, on average, 35 different
activities. For each app, we combine the list of URLs/domains extracted from
the app’s source code and the app’s network traffic. The above two techniques

5

result in 414,387 URLs and 89,787 domains that correspond to 16,069 second-
level domains.

2.4 Resource dependency dataset

Once we have the third-party resources for each analyzed app, we next strive to
reconstruct the dependency chain. To this end, we build a crawling framework
to collect apps’ resource dependency chains. As mobile browsers have limited
automation options and instrumentation capabilities, we modify the Chrome
Headless crawler, detailed in [35], to imitate Google apps’ WebViews. To ensure
that we would see the correct mobile WebViews, leveraging previous work [18],
our instrumentation involves: overriding the navigator object’s user agent, OS
platform, appVersion and appCodeName strings; and screen dimensions. Specif-
ically, we emulate Chrome on Android, as it uses the same WebKit layout engine
as the desktop Chrome used in the crawls. Recall that this covers the sequence
of (JavaScript) resources that trigger further fetches.

For each of the 414,387 URLs identified, we then load and render it using our
Chromium Headless crawler, detailed in [35]. This Chromium-based Headless [24]
crawler renders a given URL/domain and tracks the resource dependencies by
recording network requests sent to third-party domains. The requests are then
used to reconstruct the dependency chain between each app and its requested
URLs. Essentially, a dependency chain is constructed by analyzing each parent
and child domain duple. We then extract the URL of the parent domain, the
URL of the child domain, and the URL of the referrer. If the referrer differs
from the parent, we add a branch from the parent to the referrer and then
from the referrer to the child. Otherwise, if the parent is the referrer, we add
a branch from the parent to the child. This is done for every parent and child
tuple returned from our crawler. Note that each app can trigger the creation of
multiple dependency chains. This process results in 414,387 dependency chains
extracted (one per URL), creating a total set of 4,670,741 URLs.

Figure 1 presents an example of a dependency chain with 3 levels. level 1
is loaded directly by the app, and is therefore explicitly trusted by it (i.e., BBC
News). level 2 and 3, however, is implicitly (or indirectly) trusted as the BBC
News app may not necessarily be aware of their loading. For simplicity, we
consider any domain that differs from the domain owned–obtained the domain
from Google Play–by the analyzed app to be a third-party. More formally, to
construct the dependency chain, we identify third-party requests by comparing
the second level domain of the page (e.g., bbc.com) to the domains of the requests
(e.g., cdn.com and ads.com via widgets.com).

Those with different second-level domains are considered third-party. We
ignore the sub-domains so that a request to a domain such as player.bbc.com

is not considered a third-party. Due to the lack of purely automated mechanism
to disambiguate between site-specific sub-domains (e.g., player.bbc.com) or
country-specific sub-domains (e.g., bbc.co.uk), tldextract [36] for this task.
Moreover, we distinguish between first-party second-level domains, in which case
the developer of an app also owns the domain, and third-party domains, which

6

bbc.com
cdn.com
widgets.com
player.bbc.com
player.bbc.com
bbc.co.uk

include ad networks, trackers, social networks, and any other party that an app
contacts. For instance, twitter.com is a first-party to the Twitter App but it
is a third-party to BBC News.

2.5 Meta-data collection from VirusTotal

The above steps result in a dependency chain being created for each URL loaded
by an app. As a major goal within our work is to identify potentially suspicious
third-party resources, it is necessary to annotate these dependency chains with
data about the potential risks. To achieve this, we leverage the VirusTotal public
API to automatize our classification process. VirusTotal is an online solution
that aggregates the scanning capabilities provided by 68 AV tools, scanning
engines, and datasets. It has been commonly used in the academic literature to
detect malicious apps, executables, software, and domains [31]. Upon submitting
a URL, VirusTotal provides a list of scans from 68 anti-virus tools. We use
the report API to obtain the VTscore for each third-party URL belonging to
mobile apps in our dataset. Concretely, this score is the number of AV tools
that flagged the website as malicious (max. 68). We further supplement each
domain with their WebSense category provided by the VirusTotal’s record API.
During the augmentation, we eliminate invalid URLs (1.7%) in each dependency
chain. Thus, we collect the above metadata for each second-level domain in our
dataset. This results in a final sample of 4,675,173 URLs consisting of 89,787
unique domains from which we extract 16,699 unique second-level domains.

3 Analysis of Apps’ Resource Dependency Chains

We begin by characterizing the resources imported by apps. We seek to determine
if apps do, indeed, rely on implicit trust.

3.1 Characterizing apps’ implicit trust

We analyze the resource loaded per app (resp. per category of apps) and mea-
sure the “depth” of implicit trust, i.e., how many levels in the dependency chain
an app loads resources from. Collectively, the 7,048 apps in our dataset make
4,670,901 calls to 414,387 unique external resources, with a median of 509 exter-
nal resources per app. To dissect this, Table 1 presents the percentage of apps
that both explicitly and implicitly trust third-party resources. We separate apps
into their popularity, based on their number of downloads on the Play store.

Table 1 shows that the use of third-party resources is extremely common.
98.2% of explicitly trust third-parties at least once, with 22.1% importing ex-
ternally hosted JavaScript code. Moreover, around 95% of the apps do rely on
implicit trust chains, e.g., they allow third-parties to load further third-parties
on their behalf. This trend is already well-known [30] in the web context; here
we confirm it for mobile apps. Note, the propensity to form dependency chains
(≥ 2) is marginally higher in more popular apps; for example, 94% of apps with

7

a number of installs ≥ 500K have dependency chains compared to 86% of apps
with a number of installs ≤ 100K.

Number of Installs
1-5B 1-10K 10K-100K 100K-500K 500K-5M 5M-50M 50M-5B

(7048) (119) (391) (1456) (3069) (1588) (425)

Apps that trust at least one
third-party which loads:

Any Resources:
Explicitly (Lvl. 1) 98.2% 89.9% 93.6% 97.1% 98.2% 99.0% 99.3%
Implicitly (Lvl. ≥ 2) 95% 82% 86% 93% 94% 96% 98%

JavaScript:
Explicitly 22.1% 26.7% 25.3 23.1% 20.6% 21.7% 18.1%
Implicitly 92.3% 65.5% 79.3% 90.9% 92.9% 94.3% 92.0%

Table 1: Overview of the dataset for different ranges of a number of apps’ install. The
rows indicate the proportion of a number of app installs that explicitly and implicitly
trust at least one third-party (i) resource (of any type); and (ii) JavaScript code.

We next inspect the depth of the dependency chain. Intuitively, long chains
are undesirable as they typically have a deleterious impact on resource load
times [55] and increase attacks surface, e.g., drive-by downloads [19] [17], mal-
ware and binary exploitation [51] [47] [52] [44], or phishing attacks [56].

Figure 4a presents the CDF of chain level for all apps in our dataset. For
context, apps are separated into their sub-categories.3 It shows that 84.32% of
the analyzed apps create chains of trust of level 4 or below. Overall, we find
that all mobile apps import ≈5.12% of their external resources from level 5
and above. However, there is also a small minority that dramatically exceeds
this level. In the most extreme case, we see AntiVirus 2019 [2], having 1M+
downloads and average rating 4.2, with a chain containing 7 levels, consisting of
mutual calls between pubmatic.com (online marketing) and mathtag.com (ad
provider). Other notable examples include RoboForm Password Manager [13]
(productivity app with 500K+ downloads and average rating 4.3), Borussia

Dortmund [5] (sport, 1M+, 4.5), and Cover art Evite: Free Online & Text

Invitations [7] (social, 1M+, 3.9) have a maximum dependency level of 7. We
argue that these complex configurations make it extremely difficult to reliably
audit such apps, as an app cannot be assured of which objects are later loaded.
Briefly, we also note that Figure 4b reveals subtle differences between different
categories, according to WebSense categorization (cf. § 2.5), of third-party do-
mains. For example, those classified as Business and Adverts are most likely to
be loaded at level 1; this is perhaps to be expected, as many ad brokers naturally
serve and manage their own content. In contrast, Social Network third-parties
(e.g., Facebook plug-ins) are least likely to be loaded at level 1.

3 We include the most popular categories and group subcategories (Arcade, Action,
Adventure, Board, Card, Casino, Casual, Educational, Music, Puzzle, Racing, Role
Playing, Simulation, Strategy, Sports, Trivia, and Word) to ‘Game’.

8

1 2 3 4 5 6 7
Levels

0.2

0.4

0.6

0.8

1.0

CD
F

of
 A

pp
s

All
Game
Entertainment
Business
Communication
Finance
Other

(a)

1 2 3 4 5 6
Levels

0%

10%

20%

30%

40%

50%

Th
ird

-P
ar

ty
 D

ist
rib

ut
io

n Business
Ads
IT
SocialNetworks

Shopping
NewsAndMedia
Games

(b)

Fig. 4: (a) CDF of dependency chain levels (broken down into categories of apps); and
(b) distribution of third-parties across various categories and levels.

3.2 Characterizing the types of resources

The previous section has confirmed that a notable fraction of apps creates de-
pendency chains with (up to) 7 levels. Next, we inspect the types of imported
resources within these dependency chains. For analyzed (categories of) apps at
each level of the resource dependency chain, we classify the types of loaded re-
sources into six main types: Data (consisting of HTML, XML, JSON, plain text,
and encoded files), Image, JavaScript code, CSS/Fonts, Audio, and Video. We
were unable to classify 5.28% of resources loaded by the analyzed apps. On a
closer look, we find that 98% of these uncategorized resources were imported
from 242 unique, static IP addresses via WebSockets while 2% of the uncatego-
rized resources were requested from localhost (127.0.0.1).

Table 2 presents the volume of each resource type imported at each level in
the trust chain. We observe that the make-up of resources varies dramatically
based on the level in the dependency chain. For example, the fraction of images
imported tends to increase—this is large because third-parties are in turn loading
images (e.g., for adverts). In contrast, the fraction of JavaScript codes decreases
as the level in the dependency chain increases: 27.2% of resources at level 2 are
JavaScript codes compared to just 11.92% at level 5. This trend is caused by
the fact that new levels are typically created by JavaScript execution (thus, by
definition, the fraction of JavaScript codes must be deplete along the chain).
However, it remains at a level that should be of concern to app developers as
this confirms a significant fraction of JavaScript code is loaded from potentially
unknown implicitly trusted domains.

Lev. Total Data Image JS CSS/Font Audio Video Uncategorized

1 315,217 91.76% 3.74% 1.4% 0.06% 0.21% 0.07% 2.76%
2 4,040,882 10.22% 45.55% 27.2% 13.12% 0.06% 0.17% 3.53%
3 171,035 8.13% 33.11% 23.62% 5.36% 0.03% 0.01% 29.75%
4 63,179 1.6% 24.16% 14.32% 0.48% 0% 0% 59.43%
5 6,116 14.34% 18.35% 11.92% 8.19% 0% 0% 47.2%
≥ 6 383 7.31% 26.11% 1.04% 0% 0% 0.52% 65.01%

Table 2: Breakdown of resource types requested by the analyzed apps across each level
in the dependency chain. The total column refers to the number of resource calls made
at each level. Here JS represents the JavaScript code category of imported resources.

9

To build on this, we also inspect the categories, taken from WebSense (see
§ 2.5 for details), of third-party domains hosting these resources. Figure 4b
presents the make-up of third-party categories at each level in the chain. It
is clear that, across all levels, Business and Advertisement domains make up the
bulk of third-parties. We also notice other highly demanded third-party cate-
gories such as Business, Ads, and IT. These are led by well-known providers,
e.g., google-analytics.com (web-analytics–grouped as in business category as
per VirusTotal reports) provides resources to 83.78% of the analyzed apps. This
observation is in line with the fact that 81.4% of the analyzed apps embed Google
ads and analytic service libraries. The figure also reveals that the distributions of
categories vary slightly across each dependency level. For example, 37.7% of all
loaded resources at level 1 come from Business domains compared to 39.1% at
level 3, i.e., overall, the proportion increases across dependency levels. We also
observe similar trends for resources loaded from Ads and IT (e.g., web hosting)
domains.

In contrast, social network third-parties (e.g., Facebook) are mostly pre-
sented at level 1 (4.89%) and 2 (3.26%) with a significant drop at level 3. The
dominance of Business and Advertisements is not, however, caused by a plethora
of Ads domains: there are far fewer Ads domains than Business (see Table 4). In-
stead, it is driven by a large number of requests for advertisements: even though
Ads domains only make up 9.01% of third-parties, they generate 13.58% of re-
sources. Naturally, these are led by major providers. Importantly, these popular
providers can trigger further dependencies; for example, 79.41% of apps leverage
doubleclick.net which imports 11% of its resources from further implicitly
trusted third-party domains. This makes such third-parities means for online
fraudulent activities and ideal propagator of “malicious” resources for any other
domains having implicit trust in it [39].

4 Analyzing Malicious Resource Dependency Chains of
Apps

The previous section has shown that the creation of dependency chains is
widespread, and there is therefore extensive implicit trust within the mobile
and third-party app ecosystem. This, however, does not shed light on the activ-
ity of resources within the dependency chains, nor does it mean that the implicit
trust is abused by third-parties. Thus, we next study the existence of suspicious
third-parties, which could lead to abuse of the implicit trust. Within this sec-
tion, we use the term suspicious (to be more generic than malicious) because
VirusTotal covers activities ranging from low-risk (e.g., sharing private data over
unencrypted channels) to high-risk (malware).

2 4 6 8
Number of Unique Suspicious Domains Per App

0.7

0.8

0.9

1.0

CD
F

of
 A

pp
s (

%
)

All
Game
Entertainment
Business
Communication
Finance
Other

(a) Level 1

1 2 3 4 5 6 7
Number of Unique Suspicious JSes Per App

0.980

0.985

0.990

0.995

1.000

CD
F

of
 A

pp
s (

%
)

All
Game
Entertainment
Business
Communication
Finance
Other

(b) Level 1

10 20 30 40
Number of Unique Suspicious Domains Per App

0.2

0.4

0.6

0.8

1.0

CD
F

of
 A

pp
s (

%
)

All
Game
Entertainment
Business
Communication
Finance
Other

(c) Level ≥ 2

100 101 102

Number of Unique Suspicious JSes Per App

0.2

0.4

0.6

0.8

1.0

CD
F

of
 A

pp
s (

%
)

All
Game
Entertainment
Business
Communication
Finance
Other

(d) Level ≥ 2

Fig. 5: CDFs of number of unique suspicious domains contacted and JavaScript codes
downloaded by apps (broken down into apps’ categories) at explicit level (Level = 1)
and implicit level (Level ≥ 2).

10

4.1 Do apps load suspicious third-parties?

First, we inspect the fraction of third-party domains that trigger a warning by
VirusTotal. From our third-party domains, in Table 4, 14.95% have a VTscore
of 1 or above, i.e., at least one virus checker classifies the domain as suspicious.
If one treats the VTscore as a ground truth, this confirms that popular websites
do load content from suspicious third-parties via their chains of trust. However,
we are reticent to rely on VTscore = 1, as this indicates the remaining 67 virus
checkers did not flag the domain4

Table 4 shows the fraction of third-parties that are classified as suspicious
using several VTscore thresholds. For context, we separate third-parties into
their respective categories. If we classify any resource with a VTscore of ≥ 10
as suspicious, we find that 1.18% (188) of third-party domains are classified as
suspicious with 1.36% of all resource calls in our dataset going to these third-
parties. Notably this only drops to 0.59% with a very conservative VTscore of
≥ 20. We observe similar results when considering thresholds in the [5...50] range.
We therefore conservatively refer to domains with a VTscore ≥ 10 as suspicious
in the rest of this analysis.

4.2 Do apps’ dependency chains contain suspicious parties?

The above has shown that apps do load suspicious resources. We next inspect
where in the dependency chains these resources are loaded at. Additionally, we
inspect apps that inherit suspicious JavaScript resources from the explicit and
various implicit levels. We focus on JavaScript codes as active web content that
poses great threats with significant attack surfaces consisting of vulnerabilities
related to client-side JavaScript when executed in apps WebView mode, such as
cross-site scripting (XSS) and advanced phishing [37][56].

Figure 5 depicts the cumulative distributions (CDFs) of number of unique
suspicious domains and JavaScript codes per (different categories of) apps. Al-
though we do not observe significant differences among the various apps’ cate-
gories, however, from the trends in the sub-figures, interestingly, we find that the
majority of (resp. JavaScript codes) resources classified as suspicious are located
at level 2 in the dependency chain (i.e., implicitly trusted by the app).

Overall, we find that 21.46% (1,513) of the analyzed apps import at least one
resource from a suspicious domain with VTscore ≥ 10. Table 5 shows well-known
apps, ranked according to the number of unique suspicious third-parties in their
chain of dependency. We note that the popular (most vulnerable) apps belong
to various categories such as Productivity, Finance, Education, and Communi-
cation. This indicates that there is no one category of domains that inherits
suspicious JavaScript codes. However, we note that the first mobile apps cate-
gorized as “Productivity” represent the majority of most exposed domains at
level ≥2, with 16% of the total number of apps implicitly trusting suspicious
JavaScript codes belonging to the Business Category, with the distant second
being the “Communication” Category and third the “Finance” category. The

4 Diversity is likely caused by the databases used by the various virus checkers [15].

11

number of suspicious JavaScript codes loaded by these apps ranges from 3 to 25
JavaScript codes. We note the extreme case of 35% app implicitly importing at
least 6 unique suspicious JavaScript programs from 3 unique suspicious domains.
Moreover, we observe at most 7 unique third-parties (combining both explicit
and implicit level) that is a cause of suspicious JavaScripts in mobile apps. This
happens for Package Tracker [12], with over 1M install and 4.6 average rating
on Google Play, having third-party domains such as nrg-tk.ru, yw56.com.cn,
bitrix.info, fundebug.com, and ghbtns.com.

4.3 How widespread are suspicious parties?

We next inspect how “popular” these suspicious third-parties are at each po-
sition in the dependency chain, by inspecting how many Android apps utilize
them. Figure 6 displays the CDF of resource calls to third-parties made by each
app in our dataset. We decompose the third-party resources into various groups
(including total vs. suspicious). As mentioned earlier, we take a conservative
approach and consider a resource suspicious if it receives a VTscore ≥ 10.

100 101 102 103

Number of Resources Per App

0.2

0.4

0.6

0.8

1.0

CD
F

of
 A

pp
s (

%
)

All
Game
Entertainment
Business
Communication
Finance
Other

Fig. 6: CDF of resources loaded per app from various categories of third-parties.

The figure reveals that suspicious parties within the dependency chains are
commonplace: 12.76% of all apps contain at least 3 third-parties classified as
suspicious in their dependency chain. Remarkably, 21.48% of apps load resources
from third-parties at least once. Hence, even though only 9.01% of third-party
domains are classified as suspicious, their reach covers nearly one-fifth of the
apps (indirectly via implicit trust).

This is a product of the power-law distribution of third-party “popularity”
across Android apps: The top 20% of third-party domains cover 86% (3,650,582)
of all resource calls. Closer inspection shows that it is driven by prominent third-
parties: github.io and tapjoy.com, and baidu.com obtaining, during the mea-
surement period, VTscore of 11, 18, and 21 suggesting a high degree of certainty
of being suspicious. For instance, in the case of “Egypt News Moment by Mo-
ment” [6] which loaded JavaScript resources from github.io, it was actually
caused by github.io loading another third-party, ghbtn.com, which is known
to be abused by attackers for hosting malware [8] and phishing kits [22].

12

tapjoy.com
github.io
github.io

4.4 Which suspicious third-parties are most prevalent?

Next, we inspect in, Table 6, the top 10 most frequently encountered suspicious
third-party domains that are providing suspicious JavaScript resources to first-
parties (as opposed to the most exposed Android apps domains shown earlier
in Table 5). We rank these suspicious third-party domains according to their
prevalence in the Web ecosystem and further decompose our analysis at explicit
and implicit levels in the table. We found github.io is the most called domain.
Interestingly, we find several suspicious third-party domains from the Top 100
Alexa ranking. For instance, baidu.com, a search engine website mostly geared
toward East-Asian countries has been used by 253 apps and is ranked 4 by Alexa.
This domain is found to be one of the most prevalent suspicious third-party
domains at both level 1 (140 apps) and levels ≥ 2 (113 apps). An obvious reason
for this domain’s presence is because of other infected (malware-based) apps that
try to authenticate users from such domains [43]. Others such as tapjoy.com

and baidu.com are also among the most prevalent third-party domains at level
1. These websites were reported to contain malware in their JavaScript codes [20]
and suggest users promote [49] and install potentially unwanted programs [1].

While it is not shown in the table, we also note the presence of qq.com, a
Chinese Search Engine ranked high by Alexa. This is among the top 10 most
encountered suspicious third-party domains, as defined by 13 AV tools within
VirusTotal. Closer inspection reveals this is likely due to repeated instances of in-
secure data transmission, use of qq.com fake accounts for malware manifestation
and for data encryption Trojans [34] [26] [53].

1 2 3 4 5
Trust Level

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of
 M

al
. T

hi
rd

 P
ar

tie
s

Ads
Business
IT

Scocial Networks
Search Engines
Other

(a) All Apps

1 2 3 4 5
Trust Level

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of
 M

al
. T

hi
rd

 P
ar

tie
s

Ads
Business
IT

Scocial Networks
Search Engines
Other

(b) Entertainment Apps
Fig. 7: Distribution of calls to suspicious third-party domains (VT score ≥ 10) per
category at each level, for all (Fig. 7a) and Entertainment (Fig. 7b) apps.

4.5 At which level do suspicious third-parties occur?

Next, by inspecting the location(s) in the dependency chain where the malicious
third-parties are situated and the types of apps that load them, we analyze the
impact of suspicious resources loaded on mobile apps. This is vital as implicitly
trusted (level ≥ 2) resources are far more difficult for an app developer (or owner)
to remove—they could, of course, remove the intermediate level 1 resource, but
this may disrupt their own business activities.

13

Table 3 presents the proportion of apps that import at least one resource with
a VTscore ≥ 10. We separate resources into their level in the dependency chain.
Interestingly, the majority of resources classified as suspicious are located at level
1 in the dependency chain (i.e., they are explicitly trusted by the app). 41.2%
of the analyzed apps containing suspicious third-parties are “infected” via level
1. This suggests that the app developers are not entirely diligent in monitoring
their third-party resources and may purposefully utilize such third-parties [28].

4.24% of the analyzed apps import at least 11 resources from suspicious via
implicit trust (i.e., level ≥ 2). In these cases, the Game developers are poten-
tially unaware of their presence. The most vulnerable category is Games: 23.34%
of Game apps import implicitly trusted resources from level 2 with a VTscore
≥ 10. Notably, among the 78 Game apps importing suspicious JavaScript re-
sources from trust level 2 and deeper, we find 41 apps loading advertisements
from adadvisor.net. One possible reason is that ad-networks could be infected,
or victimized with malware to perform malvertising [39][50] or binary exploita-
tion [51][47].

All Apps Games Apps Entert. Apps Business Apps Comm. Apps
Lv. All JS All JS All JS All JS All JS

1 41.20% 37.37% 55.40% 43.43% 53.61% 47.20% 49.23% 45.38% 47.41% 45.25%
2 4.24% 1.29% 23.34% 4.53% 10.09% 3.50% 7.53% 3.21% 8.09% 3.05%
3 1.01% 0.13% 1.59% 0.40% 3.26% 0.18% 1.070% 0.29% 2.20% 0.10%
4 0.11% ≤ 0.1% 0.51% ≤ 0.1% 0.80% ≤ 0.1% 0.60% ≤ 0.1% 0.40% ≤0.001%
≥ 5 ≤ 0.10% 0 ≤0.001% ≤ 0.1% ≤0.001% ≤ 0.1% ≤0.001% ≤ 0.1% ≤0.001% 0.00%

Table 3: Proportion of apps importing resources classified as suspicious (with VTscore
≥ 10) at each level.

Similar, albeit less extreme, observations can be made across Entertainment
(abbreviated as Entert. in Table 3) and Business apps. Briefly, Figure 7 displays
the categories of (suspicious) third-parties loaded at each level in the apps’ de-
pendency chains — it can be seen that the majority are classified as Business
according to WebSense domain classification (cf. Section 2.5). This is, again, be-
cause of several major providers classified as suspicious such as comeet.co and
dominionenergy.com. Furthermore, it can be seen that the fraction of adver-
tisement resources also increases with the number of levels due to the loading of
further resources (e.g., images).

We next strive to quantify the level of suspicion raised by each of these
JavaScript programs. Intuitively, those with higher VTscores represent a higher
threat as defined by the 68 AV tools used by VirusTotal. Hence, Figure 8 presents
the cumulative distribution of the VTscores for all JavaScript resources loaded
with VTscore ≥ 1. We separate the JavaScript programs into their location in the
dependency chain. A clear differences can be observed, with level 2 obtaining the
highest VTscore (median 28). In fact, 51% of the suspicious JavaScript resources
loaded on trust level 2 have a VTscore > 30 (indicating very high confidence).

Figure 9 also presents the breakdown of the domain categories specif-
ically for suspicious JavaScript codes. Clear trends can be seen, with IT
(e.g., dynaquestpc.com), News and Media (e.g., therealnews.com), Enter-
tainment (e.g., youwatchfilm.net) and Business (e.g., vindale.com) are dom-

14

Fig. 8: CDF of suspicious JavaScripts (VTscores ≥ 1) at different levels in the chain.

inating. Clearly, suspicious JavaScripts cover a broad spectrum of activities.
Interestingly, we observed that 63% and 66%, respectively, of IT and News &
Media JavaScript codes, are loaded from level ≥ 2 in contrast to 17% and 25%
of JavaScript code from Social Networks and Streaming loaded at level 1.

We next strive to quantify the level of suspicion raised by each of these
JavaScript programs. Intuitively, those with higher VTscores represent a higher
threat as defined by the 68 AV tools used by VirusTotal. Hence, Figure 8 presents
the cumulative distribution of the VTscores for all JavaScript resources loaded
with VTscore ≥ 1. We separate the JavaScript programs into their location in the
dependency chain. A clear difference can be observed, with level 2 obtaining the
highest VTscore (median 32). In fact, 78% of the suspicious JavaScript resources
loaded on trust level 2 have a VTscore > 52 (indicating very high confidence).

0 100 200 300 400 500 600
of Suspicious JavaScript Programs

IM
Forums
Parked

Vehicles
Ads

RefMaterials
PNandBackup

Streaming
SocialNetworks

Blogs
Sports

Uncategorized
Financial

WebHosting
Education
Shopping

Adult
Download

SocAndLifestyle
Games

Government
Business

SearchEngines
Entertainment

NewsAndMedia
IT

Level = 1
Level 2

Fig. 9: Breakdown of suspicious JavaScript resources based on the category of the
domain.

This is a critical observation since as mentioned earlier, while suspicious
third-parties at level 1 can be ultimately removed by apps’ developers if flagged
as suspicious, this is much more difficult for implicitly trusted resources further
along the dependency chain. If the intermediate (non-suspicious) level 1 resource
is vital for the webpage, it is likely that some operators would be unable or un-
willing to perform this action. The lack of transparency and the inability to
perform a vetting process on implicitly trusted loaded resources further compli-
cates the issue. It is also worth noting that the VTscore for resources loaded

15

further down the dependency chain is lower (e.g., level 4). For example, 92% of
level 2 resources receive a VTscore below 3. This suggests that the activity of
these resources is more contentious, with a smaller number of AV tools reaching
a consensus.

5 Related Work
We examine literature that measures third-party ecosystems on the web [30][29]
and mobile platforms [48]; then review the security and privacy implication of
loading resources from third-parties and illuminate on the chain of resource load-
ing. Previous works analyzed the presences of third-party JavaScript libraries
and ill-maintained external web servers making exploitation via JavaScript triv-
ial [41]. Lauinger et al. led a further study, classifying sensitive libraries and the
vulnerabilities caused by them [37]. Gomer et al. analyzed users’ exposure to
third-party tracking in the context of search queries, showing that 99.5% of users
are tracked by popular trackers within 30 clicks [23]. Hozinger et al. found 61
third-party JavaScript exploits and defined three main attack vectors [27]. Our
work differs quite substantially from these studies in that we are not interested
in the third-party JavaScript code itself, nor the simple presence of third-party
tracking domains embedded in tweets or in a webpage. Instead, we are inter-
ested in how mobile apps’ users are exposed to third-parties and the presence of
third-parties in the redirect chain. In contrast to our work, these prior studies
ignore the presence of chains of resource loading and treat all third-parties as
“equal”, regardless of where they are loaded when users click on a given URL
embedded in a tweet or webpage.

Kumar et al. [35] characterized websites’ resource dependencies on third-
party services. In line with our work, they found that websites’ third-party re-
source dependency chains are widespread. This means, for example, that 55% of
websites, among Alexa top 1M, are prevented from fully migrating to HTTPS
by the third-parties that provide resources to them. More related work is Ikram
et al. [30], who perform a large-scale study of suspicious resource loading and
dependency chains in the Web, and around 50% of first-party websites render
content that they did not directly load. They also showed that 84.91% of web-
sites have short dependency chains (below 3 levels). The study reported that
1.2% of these suspicious third-parties have remarkable reach into the wider Web
ecosystem. To the best of our knowledge, we are the first to characterize the
chains of resource loading of mobile apps. Moreover, we also characterize the
role of apps’ suspicious resource loading. We suggest that more rigorous vetting
of in-app third-party resources is required.

6 Concluding Remarks

This paper explored dependency chains in Android apps. Focusing on how
external resources are loaded by mobile apps, we found that over 98.2% of
apps do rely on implicit trust. Although the majority (70.91%) of the ana-
lyzed apps have short chains, we found apps with chains up to 7 levels of de-
pendency. Perhaps unsurprisingly, the most commonly encountered implicitly

16

trusted third-parties are well-known analytics services and ad-networks domains
(e.g., google-analytics.com and doubleclick.net), however, we also ob-
served various less common domains to be implicitly trusted third-parties. In our
future work, we wish to perform longitudinal measurements to understand how
these metrics of maliciousness evolve over time. We are particularly interested in
understanding the (potentially) ephemeral nature of threats. To provide apps’
users better control of their privacy and to facilitate secure resource loading, we
also aim to investigate ways to automatically identify and sandbox suspicious
parties in the resource dependency chains to alert users to security vulnerabilities
(resp. HTTPS downgrades) of at each level of dependency chains.

References

1. Android.tapjoy — symantec. https://www.symantec.com/security-center/

writeup/2014-052619-4702-99 (2019)
2. AntiVirus 2019. https://play.google.com/store/apps/details?id=com.

androhelm.antivirus.free2 (2019)
3. Apktool - a tool for reverse engineering 3rd party, closed, binary android apps.

https://ibotpeaches.github.io/Apktool/ (2019)
4. BBC News. https://play.google.com/store/apps/details?id=bbc.mobile.

news.ww (2019)
5. Borussia Dortmund. https://play.google.com/store/apps/details?id=de.

bvb.android (2019)
6. Egypt news moment by moment. https://play.google.com/store/apps/

details?id=com.egy.new (2019)
7. Evite: Free Online & Text Invitations. https://play.google.com/store/apps/

details?id=com.evite (2019)
8. Github-hosted malware targets accountants with ran-

somware. https://www.bleepingcomputer.com/news/security/

github-hosted-malware-targets-accountants-with-ransomware/ (2019)
9. Google play unofficial python 3 api library. https://github.com/alessandrodd/

googleplay_api (2019)
10. mitmproxy - an interactive HTTPS proxy. https://mitmproxy.org (2019)
11. monkeyrunner — Android Developers. https://developer.android.com/studio/

test/monkeyrunner/ (2019)
12. Package tracker. https://play.google.com/store/apps/details?id=de.orrs.

deliveries (2019)
13. RoboForm Password Manager. https://play.google.com/store/apps/details?

id=com.siber.roboform (2019)
14. Bashir, M.A., Arshad, S., Robertson, W., Wilson, C.: Tracing information flows

between ad exchanges using retargeted ads. In: USENIX Security) (2016)
15. Canto, J., Dacier, M., Kirda, E., Leita, C.: Large scale malware collection: lessons

learned. In: SRDS (2008)
16. Chen, J., Zheng, X., Duan, H.X., Liang, J., Jiang, J., Li, K., Wan, T., Paxson, V.:

Forwarding-loop attacks in content delivery networks. In: NDSS (2016)
17. Cova, M., Kruegel, C., Vigna, G.: Detection and analysis of drive-by-download

attacks and malicious javascript code. In: Web Conference (WWW) (2010)
18. Das, A., Acar, G., Borisov, N., Pradeep, A.: The web’s sixth sense: A study of

scripts accessing smartphone sensors. In: SIGSAC (2018)

17

https://www.symantec.com/security-center/writeup/2014-052619-4702-99
https://www.symantec.com/security-center/writeup/2014-052619-4702-99
https://play.google.com/store/apps/details?id=com.androhelm.antivirus.free2
https://play.google.com/store/apps/details?id=com.androhelm.antivirus.free2
https://ibotpeaches.github.io/Apktool/
https://play.google.com/store/apps/details?id=bbc.mobile.news.ww
https://play.google.com/store/apps/details?id=bbc.mobile.news.ww
https://play.google.com/store/apps/details?id=de.bvb.android
https://play.google.com/store/apps/details?id=de.bvb.android
https://play.google.com/store/apps/details?id=com.egy.new
https://play.google.com/store/apps/details?id=com.egy.new
https://play.google.com/store/apps/details?id=com.evite
https://play.google.com/store/apps/details?id=com.evite
https://www.bleepingcomputer.com/news/security/github-hosted-malware-targets-accountants-with-ransomware/
https://www.bleepingcomputer.com/news/security/github-hosted-malware-targets-accountants-with-ransomware/
https://github.com/alessandrodd/googleplay_api
https://github.com/alessandrodd/googleplay_api
https://mitmproxy.org
https://developer.android.com/studio/test/monkeyrunner/
https://developer.android.com/studio/test/monkeyrunner/
https://play.google.com/store/apps/details?id=de.orrs.deliveries
https://play.google.com/store/apps/details?id=de.orrs.deliveries
https://play.google.com/store/apps/details?id=com.siber.roboform
https://play.google.com/store/apps/details?id=com.siber.roboform

19. Egele, M., Wurzinger, P., Kruegel, C., Kirda, E.: Defending browsers against
drive-by downloads: Mitigating heap-spraying code injection attacks. In: DIMVA.
Springer (2009)

20. Exchange, I.X.: Statcounter session hijack. https://exchange.xforce.ibmcloud.
com/vulnerabilities/20506 (2005)

21. Falahrastegar, M., Haddadi, H., Uhlig, S., Mortier, R.: Anatomy of the third-party
web tracking ecosystem. Traffic Measurements Analysis Workshop (TMA) (2014)

22. Gatlan, S.: Github service abused by attackers to host phish-
ing kits. https://www.bleepingcomputer.com/news/security/

github-service-abused-by-attackers-to-host-phishing-kits/ (2019)
23. Gomer, R., Rodrigues, E.M., Milic-Fraying, N., Schrafel, M.: Network analysis of

third party tracking: User exposure to tracking cookies through search. In: WI-IAT
(2013)

24. Google: Headless chromium. https://chromium.googlesource.com/chromium/

src/+/lkgr/headless/README.md (2018)
25. Grace, M.C., Zhou, W., Jiang, X., Sadeghi, A.R.: Unsafe exposure analysis of

mobile in-app advertisements. In: WISEC (2012)
26. GreenBerg, A.: Hack brief: malware hits 225,000 (jailbro-

ken, mostly chinese) iphones. https://www.wired.com/2015/08/

hack-brief-malware-hits-225000-jailbroken-mostly-chinese-iphones/

(2015)
27. Holzinger, P., Triller, S., Bartel, A., Bodden, E.: An in-depth study of more than

ten years of java exploitation. In: CCS (2016)
28. Ibosiola, D., Castro, I., Stringhini, G., Uhlig, S., Tyson, G.: Who watches the

watchmen: Exploring complaints on the web. In: Web Conference (WWW) (2019)
29. Ikram, M., Asghar, H.J., Kâafar, M.A., Mahanti, A., Krishnamurthy, B.: Towards

seamless tracking-free web: Improved detection of trackers via one-class learning.
PoPETs (2017)

30. Ikram, M., Masood, R., Tyson, G., Kaafar, M.A., Loizon, N., Ensafi, R.: The chain
of implicit trust: An analysis of the web third-party resources loading. In: WWW
(2019)

31. Ikram, M., Vallina-Rodriguez, N., Seneviratne, S., Kaafar, M.A., Paxson, V.: An
analysis of the privacy and security risks of android vpn permission-enabled apps.
In: IMC (2016)

32. Inc, V.: Virustotal public api. https://www.virustotal.com/en/documentation/
public-api/ (2019)

33. Janosik, J.: Russia hit by new wave of ransomware spam. https://www.

welivesecurity.com/2019/01/28/russia-hit-new-wave-ransomware-spam/

(2019)
34. Knockel, J., Senft, A., Deibert, R.: Wup! there it is privacy and

security issues in qq browser. https://citizenlab.ca/2016/03/

privacy-security-issues-qq-browser/ (2016)
35. Kumar, D., Ma, Z., Mirian, A., Mason, J., Halderman, J.A., Bailey, M.: Security

Challenges in an Increasingly Tangled Web. In: WWW (2017)
36. Kurkowski, J.: Accurately separate the TLD from the registered domain and subdo-

mains of a url, using the public suffix list. https://github.com/john-kurkowski/
tldextract (2018)

37. Lauinger, T., Chaabane, A., Arshad, S., Robertson, W., Wilson, C., Kirda, E.:
Thou shalt not depend on me: Analysing the use of outdated javascript libraries
on the web. In: NDSS. The Internet Society (2017)

18

https://exchange.xforce.ibmcloud.com/vulnerabilities/20506
https://exchange.xforce.ibmcloud.com/vulnerabilities/20506
https://www.bleepingcomputer.com/news/security/github-service-abused-by-attackers-to-host-phishing-kits/
https://www.bleepingcomputer.com/news/security/github-service-abused-by-attackers-to-host-phishing-kits/
https://chromium.googlesource.com/ chromium/src/+/lkgr/headless/README.md
https://chromium.googlesource.com/ chromium/src/+/lkgr/headless/README.md
https://www.wired.com/2015/08/hack-brief-malware-hits-225000-jailbroken-mostly-chinese-iphones/
https://www.wired.com/2015/08/hack-brief-malware-hits-225000-jailbroken-mostly-chinese-iphones/
https://www.virustotal.com/en/documentation/public-api/
https://www.virustotal.com/en/documentation/public-api/
https://www.welivesecurity.com/2019/01/28/russia-hit-new-wave-ransomware-spam/
https://www.welivesecurity.com/2019/01/28/russia-hit-new-wave-ransomware-spam/
https://citizenlab.ca/2016/03/privacy-security-issues-qq-browser/
https://citizenlab.ca/2016/03/privacy-security-issues-qq-browser/
https://github.com/john-kurkowski/tldextract
https://github.com/john-kurkowski/tldextract

38. Lerner, A., Simpson, A.K., Kohno, T., Roesner, F.: Internet jonesa and the raiders
of the lost trackers: An archaeological study of web tracking from 1996 to 2016.
In: 25th USENIX Security (2016)

39. Li, Z., Zhang, K., Xie, Y., Yu, F., Wang, X.: Knowing your enemy: understanding
and detecting malicious web advertising. In: CCS (2012)

40. MalwareDontNeedCoffee: A doubleclick https open redirect used in
some malvertising chain. http://malware.dontneedcoffee.com/2015/10/

a-doubleclick-https-open-redirect-used.html (2015)
41. Nikiforakis, N., Invernizzi, L., Kapravelos, A., Van Acker, S., Joosen, W., Kruegel,

C., Piessens, F., Vigna, G.: You are what you include: Large-scale evaluation of
remote javascript inclusions. In: CCS (2012)

42. Pellegrino, G., Rossow, C., Ryba, F.J., Schmidt, T.C., Wählisch, M.: Cashing out
the great cannon? on browser-based ddos attacks and economics. In: USENIX Sec
(2015)

43. Popa, B.: 85 infected android apps stealing social network passwords found on play
store. https://news.softpedia.com/news/85-infected-android-apps-stealing-social-
network-passwords -found-on-play-store-518984.shtml (2017)

44. Rastogi, V., Shao, R., Chen, Y., Pan, X., Zou, S., Riley, R.: Are these ads safe:
Detecting hidden attacks through the mobile app-web interfaces. In: NDSS (2016)

45. Reis, C., Gribble, S.D., Kohno, T., Weaver, N.C.: Detecting in-flight page changes
with web tripwires. In: NSDI (2008)

46. Sequa, J.: Large angler malvertising campaign hits top publish-
ers. https://blog.malwarebytes.com/threat-analysis/2016/03/

large-angler-malvertising-campaign-hits-top-publishers/ (2016)
47. Starov, O., Dahse, J., Ahmad, S.S., Holz, T., Nikiforakis, N.: No honor among

thieves: A large-scale analysis of malicious web shells. In: WWW (2016)
48. Tang, Z., Tang, K., Xue, M., Tian, Y., Chen, S., Ikram, M., Wang, T., Zhu, H.:

iOS, your OS, everybody’s OS: Vetting and analyzing network services of iOS
applications. In: 29th USENIX Security Symposium (USENIX Security 20). pp.
2415–2432 (2020)

49. Unuchek, R.: Leaking ads securelist. https://securelist.com/leaking-ads/

85239/ (2018)
50. VANCE, A.: Times web ads show security breach. https://www.nytimes.com/

2009/09/15/technology/internet/15adco.html (2009)
51. Vanrykel, E., Acar, G., Herrmann, M., Diaz, C.: Leaky birds: Exploiting mobile

application traffic for surveillance. In: ICFCDS (2016)
52. Vigna, G., Valeur, F., Balzarotti, D., Robertson, W., Kruegel, C., Kirda, E.: Re-

ducing errors in the anomaly-based detection of web-based attacks through the
combined analysis of web requests and sql queries. JCS 17(3) (2009)

53. Virus, Q.R.: How to remove nintendonx@qq.com virus completely. https://

quickremovevirus.com/how-to-remove-nintendonxqq-com-virus-completely7

(2017)
54. Wang, H., Liu, Z., Guo, Y., Chen, X., Zhang, M., Xu, G., Hong, J.: An explorative

study of the mobile app ecosystem from app developers’ perspective. In: WWW
(2017)

55. Wang, X.S., Balasubramanian, A., Krishnamurthy, A., Wetherall, D.: Demystify
page load performance with wprof. In: USENIX NSDI (2013)

56. Whittaker, C., Ryner, B., Nazif, M.: Large-scale automatic classification of phish-
ing pages. In: NDSS (2010)

19

http://malware.dontneedcoffee.com/2015/10/a-doubleclick-https-open-redirect-used.html
http://malware.dontneedcoffee.com/2015/10/a-doubleclick-https-open-redirect-used.html
https://blog.malwarebytes.com/threat-analysis/2016/03/large-angler-malvertising-campaign-hits-top-publishers/
https://blog.malwarebytes.com/threat-analysis/2016/03/large-angler-malvertising-campaign-hits-top-publishers/
https://securelist.com/leaking-ads/85239/
https://securelist.com/leaking-ads/85239/
https://www.nytimes.com/2009/09/15/technology/internet/15adco.html
https://www.nytimes.com/2009/09/15/technology/internet/15adco.html
https://quickremovevirus.com/how-to-remove-nintendonxqq-com-virus-completely7
https://quickremovevirus.com/how-to-remove-nintendonxqq-com-virus-completely7

VTScore ≥ 1 VTScore ≥ 5 VTScore ≥ 10 VTScore ≥ 20 VTScore ≥ 40
Category Third-parties Total Calls Suspicious JS Num. Vol. Num. Vol. Num. Vol. Num. Vol. Num. Vol.

Business 5,073 (33.43%) 1,030,635 63,970 (6.21%) 14.75% 47.59% 1.70% 2.75% 1.13% 1.17% 0.61% 0.22% 0.12% 0.09%
Ads 1,367 (9.01%) 623,261 100,843 (16.18%) 24.58% 60.65% 2.93% 5.36% 1.54 5.03% 0.59% 0.08% 0.08% 0.01%
IT 1,173 (7.73%) 41,841 887 (2.12%) 13.98% 14.54% 1.62% 3.42% 0.68% 1.61% 0.26% 0.09% 0% 0%
Shopping 607 (4.0%) 137,686 990 (0.72%) 13.51% 12.01% 1.98% 0.37% 1.32% 0.17% 1.15% 0.13% 0.66% 0.12%
NewsAndMedia 549 (3.62%) 76,566 1,205 (1.57%) 15.12% 28.86% 3.28% 0.94% 2.37% 0.93% 1.09% 0.14% 0.18% 0.03%
Social Networks 246 (1.62%) 160,789 5,033 (3.13%) 19.51% 85.77% 1.63% 0.59% 0.81% 0.59% 0.81% 0.59% 0% 0%
Games 244 (1.61%) 27,419 358 (1.30%) 16.39% 16.40% 2.46% 3.11 1.64% 1.96% 1.23% 1.93% 1.23% 1.93%
Others 5,916 (38.99%) 2,656,419 213,604 (8.04%) 12.98% 89.83% 1.81% 1.066% 1.12% 0.65% 0.50% 0.60% 0.15% 0.027%

Total 15,175 (100%) 4,670,741 386,890 (8.28%) 14.95% 73.69% 1.93% 2.03% 1.18% 1.36% 0.59% 0.44% 0.16% 0.06%

Table 4: Overview of suspicious third-parties in each category. Col.2-4: number of
third-party websites in different categories, the number of resource calls to resources,
and the proportion of calls to suspicious JavaScript code. Col.5-9: Fraction of third-
party domains classified as suspicious (Num.), and fraction of resource calls classified
as suspicious (Vol.), across various VTscores (i.e., ≥ 1 and ≥ 40).

Unique Suspicious Domains (and JSes) at Level = 1

Chain
App Cat. Rat. Insta. Dom. JSes len.

1 Dashlane Pass. Manag. Prod. 4.6 1M+ 9 3 7
2 BPI Fina. 4.3 1M+ 7 4 5
3 Korean Dictionary Educ. 4.2 100K+ 7 5 6
4 RoboForm Pass. Manag. Prod. 4.3 500K+ 7 4 7
5 Bane Voice Changer Enter. 3.4 1M+ 6 2 4

Unique Suspicious Domains (and JSes) at Level ≥ 2

Chain
App Cat. Rat. Insta. Dom. JSes len.

1 Package Tracker Prod. 4.6 1M+ 37 34 4
2 SGETHER Live Stream. Vid. Play. 4.0 1M+ 36 252 5
3 Opera Browser Comm. 4.4 100M+ 34 64 5
4 Adrohelm Antivirus Comm. 4.2 1M+ 34 48 7
5 NFL Game Centre Game 4.1 50M+ 31 34 3

Table 5: Top 5 most exposed apps (with VTscore ≥ 10) ranked by the number of
unique suspicious domains.

Prevalence of Third-parties at Level = 1

Third-party Domain Alexa Rank VTscore # Apps Category

1 github.io 50 11 769 IT
2 tapjoy.com 47,720 18 199 IT
3 baidu.com 4 21 140 SearchEngine
4 oracle.com 825 10 39 IT
5 dominionenergy.com 16,757 12 31 Business

Prevalence of Third-parties at Level ≥ 2

1 baidu.com 4 21 113 SearchEngine
2 sil.org 64,483 16 17 Ads
3 comeet.co 87,766 13 117 Business
4 cloudfront.net 264 11 12 WebHosting
5 amazonaws.com 1,597 10 8 WebHosting

Table 6: Top 5 most prevalent suspicious third-party domains (VTscore ≥ 10) on level
1 and level ≥ 2 providing resources to Apps. The number of apps (# Apps) having the
corresponding suspicious third-party domain in their chain of dependency.

20

	A First Look at Android Apps' Third-party Resources Loading

