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Planet-hunting from space

Source: exoplanet.eu & oo, > 5800 exoplanets to date (NASA Exoplanet Archive)

-> 2780 + 550 (and 3000 candidates)

* Number to increase by factors with future missions
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A key knowledge gap in the pre-main sequence

Only ~15 planets currently known around < 10-40 Myr-old stars
[e.g., Barber et al. 2024, Nature 635, 574; Vach et al. 2025, under review]

Young planets -> constrain thermal contraction, atmospheric evolution, orbital migration

EVE: first mission to explore the processes th
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How do stars shape the early evolution
of planets and their atmospheres?

EVE will use multi-wavelength photometry to discover new young planets and determine
how their host stars’ activity and rotation shape their atmospheres and orbits.
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The EVE mission in a nutshell

A

EVE offers new observing capabilities not previously flown:
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Simultaneous photometry in
NUV, optical, and near-IR bands

Fast (30 sec) observing cadence

Roughly 20-30 day stare
duration for each pointing

<20” resolution over 25 deg?
field of view

Targeting young (<100 Myr)
clusters
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|. EVE tests what regulates rotation in young stars
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l. EVE tests what regulates rotation in young stars &

EVE provides a ~15x Stellar winds
increase in the sample
of young stars with
measured truncation
radius, constraining
where close-in planets
are born and migrate.
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Il. EVE probes the progenitors of small planets
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EVE increases the sample of
planets younger than 30 Myr by
5x to determine whether the
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progenitors of small planets form
close-in or far out.

This will reveal the properties of

planets’ primordial atmospheres.
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Il. EVE probes the progenitors of small planets

e Simultaneous NUV + optical photometry enables flare removal, increasing sensitivity
in transit depth by 20% and enabling detection of super-Earths around K7 dwarf stars
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lll. EVE determines flares’ effect on photochemistry &

Photochemistry Surface heating Howard et|al., incl. Venuti
10~ 0, 05,05 (2025), AJ,|169, 27
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14000 K flare

Synthetic spectra of two flares from € Eri.

The optical energy of both flares is 1.3x1032 erg
but the NUV energies differ by 4.6 x
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* Unprecedented database of flare data (10° events) in the optical from TESS, but only a
few dozen with simultaneous UV observations, often with coarse sampling

 FUV-NUV radiation drives photochemistry -> modeling of exoplanetary atmospheres



lll. EVE determines flares’ effect on photochemistry &
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EVE expands the multi-wavelength superflare sample by 100x, determining the
cumulative effect of NUV flare radiation on atmospheric photochemistry.

This will show how planetary atmospheres coevolve with their hosts’ activity.



EVE mission design and implementation

A

Orbit evolution relative to Example target distribution Payload schematic
the celestial sphere

RA

* One instrument with different sets of optics for the three bands

 Mid-inclination orbit at 1,000 km altitude that precesses to provide view of
targets across the entire sky, while avoiding the sun, moon, and Earth limb



EVE: NASA’s first NUV-optical-NIR
photometry mission

Simultaneously observing young stellar clusters in three bands at fast cadence to
understand how stars and their planets coevolve

Age <10 Myr
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