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Hydrogen

Viable

Society nvironment

“Affordable clean hydrogen for a net-
zero carbon future and a sustainable,
resilient, and equitable economy.”

v’ Hydrogen and hydrogen vectors to
decarbonise energy, transport, and
heavy industry sectors
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Hydrogen production

Renewable
technologies
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Hydrogen storage

Hydrogen Storage
Methods

Physical-based Methods Material-based Storage

Liquid Organic H Solid State H
Compressed Gas f L 2 2

Cold/ Cryo
Compressed

v' Storage vessels: low weight and great capacity
Liquid hydrogen

* GH,: 0.03 kg per litre, 10% energy loss, brittle under low temperatures,
from full metal to full composite pressure vessel: 200-1000 bars

* LH,: 0.07 kg per litre, - 253°C, 40% energy loss, brittle under low
temperatures, 4—10 kWh to produce 1 kg of liquid hydrogen, average to
large-scale storing and supply

* Cryo-compressed H,: a supercritical cryogenic gas, -233 °C, no
liquefaction without evaporative losses, early stage of development



Hydrogen transmission

Sources
. Wells Storage
e Storage facilities
e Offshore drilling
e LNG terminals
Compressor
Stations

‘ | | Natural Gas

.

Processing

Gathering Lines Transmission Lines

10-15 MPa

* 5%-15% hydrogen by volume

Large-volume Customers

Power generation
Large industry

City
Gate

Odorant
Added

Local Customers

Residential

L oo
—
I

CNG Station #

Distribution Distribution

WV ES Service Lines

1-5 MPa

» No significantly increasing risks (overall public safety)
« Durability and integrity of the existing natural gas pipeline network.
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Hydrogen utilisation

= Qil refining
) e ) ef‘ng
= Chemical and fertiliser production , oil B‘ﬂ Blbdies
production
= Ammonia and steel 5
Q_ \Metals 3.3 ,
i . £ production Transportation
v’ powering vehicles . a 2 « Airplane
. * Ships
v’ generating heat i | 'Q o
; i Chemical, * Bus
v' trading clean energy between countries 7-:\ e . ga, é‘
rocess __ *space
Q™ @e &
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ro Fertlizer |
Industry
50% M Synthetic fuels
B Ammonia
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25%
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Hydrogen utilisation
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. Priority stated in official strategy/roadmap. or demonstrated industry deployment (in the absence of national strategies)

Less emphasis in official strategy/roadmap. or likely opportunity but not specified in a official strategy/roadmap
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Hydrogen progress
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Hydrogen progress

Industry Development Signal 2025 Pace 2030 Pace 2025 Pace 2030 Pace
I'4
[
I Chemical feedstock Advancing Quickly Advancing Quickly Advancing Quickly
o o o - o e e e e o e e e S SEm GEe e B SEm Gmm GEm S B Smm Smm Gmm e Smm Smm e e S Smm Smm Gmm Gmm S S Gmm Gmm e G Gmm Gmm Gmm G mmm mmm

Electricity grid support Advancing slowly Advancing slowly Advancing Advancing slowly

Mining and off-grid Advancing Advancing slowly Advancing Advancing slowly

Heavy transport Advancing slowly Advancing slowly Advancing slowly Advancing slowly

Light transport Advancing slowly Advancing slowly Advancing slowly Advancing slowly

Gas networks Advancing Advancing Advancing Advancing slowly

Electricity generation Advancing Quickly Advancing Advancing Quickly Advancing Quickly

Steel and iron making Advancing slowly Advancing slowly Advancing slowly Advancing slowly

Industrial heat Advancing Advancing Advancing slowly Advancing slowly




Hydrogen — indirect impact

10

0.1

0.01

kg per GWh output

0.001

0.0001

v’ Rapid growth of electrolyser will drive
major increases in nickel and zirconium

v" Rapid growth of fuel cells will drive major
increases in platinum group metals

C -~ I I

| Nickel Zirconium

Alkaline electrolyser

| Nickel JI‘ Zirconium ‘Lanthanum‘ Yttrium Platinum ‘ Palladium Iridium Platinum

SOEC electrolyser (SOFC fuel cell) PEM electrolyser Fuel cell

4th Jargest
producer

Estimated levelised demand for selected
minerals in electrolysers and fuel cells

* Normalisation by output accounts for varying efficiencies of different electrolysis technologies.
* Full load hours of electrolysers assumed to be 5,000 hours per year.
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Hydrogen - challenges

« Cost
 Water
« Low volumetric energy density

Drive 100 km using petrol
($1.43/L) ~ $13.31/kg H,

Drive 100 km using diesel
($1.5/L) ~ $11.21/kg H,
Deliver 1 GJ heat using natural
gas ($10/GJ) ~ $1.2/kg H,,

Electrolysis 9 L
Coal gasification 9 L
Steam methane reforming 4.5 L

HFCV requires

5 kg of H, for a full tank
5kg =61 m3at STP
0.127 m3 at 700 bar 25° C

 Storage technologies
Challenges = J gies
* |nfrastructure and facilities
« Policy, regulations, standards
* Social licence
« Safety and reliability
40 - .
— diesel
= JP-8
330 | E10 Gasoline
2 ropane (liq)
- ethanol prop q_
220 - methane (liq)
(@]
E methanol
S 10 - 7 H2 (lig) e
§ methane (250 bar) [ H2 (700(b§r)) ,
0 . H2(3500bar) * .
0 20 40 60 80 100 120
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Gravimetric density (MJ/kQg)
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Hydrogen safety

Hydrogen is not new, why 1s hydrogen safety important? ?
el
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Hydrogen safety

b

= Hydrogen 1s new as a fuel and energy carrier
= Hydrogen in scale
= Bringing hydrogen to public

Hydrogen is not new, why 1s hydrogen safety important? ?
el
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Hydrogen safety

Leakage
24%

Explosion
25%

Near-miss
19%

Reaction

Fire 2%
26% Fire and
Explosion
1%
Production

Sl s g X L 2 guct
e A major release of high-pressure hydrogen / —.

occurred in Santa Clara during a gaseous

hydrogen fill of a modular multi-cylinder trailer. \ ' ‘

* 250 kg of hydrogen was released. Delivery

Storage 14%

65%
v' Initial leak
v' Miscommunication
v Hydrogen explosion and jet fires Learn from history

v' Subsequent fires Be proactive about risks!
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Risk assessment

Risk

Assessment of the presence and What Can Go Wrong?

. . . Hazard ldentification

impact of unwanted situation at

time t

Risk (t) = occurrence of unwanted How Often? How Big?
situations & its impact Frequency Analysis Consequence Analysis

Risk(t) = F(t).Loss (t)

v

Outcome?
Safety Risk Assessment

Absence of unwanted situation in
system/operation at time t ]

How to reduce it?
Risk Minimization

Reduce likelihood (probability)
Reduce Risk

F. Salehi Reduce impact



Hydrogen safety
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Hydrogen leakage

Hydrogen safety
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Hydrogen safety

Geome tric
Modeling

Input layer Hidden layers Output layer

N4 N4 v
N
AN
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Computational and data-driven models

Data-driven

Equation-driven

Bayesian inference Uncertainty qualification DNS
. Statistical estimation
Generative Machine learning LES
modelling
Surrogate and closure models RANS

Supervised
learning

Reduced order modelling
POD

Artificial intelligence

Machine learning

Deep
learning
Semisupervised Unsupervised
learning learning

Immediate feedback

Delay feedback No feedback

v

Y v

» Classification
* Regression
* Ensemble learning

* Reinforcement learning
» Generative adversarial
networks

* Clustering
 Dimensionality reduction




Computational and data-driven models

v Grid optimisation
v Initial approximation

[ ML models }

| Syste
l | | > / models
Knowledge- | [\ b g ML Pure ML l Component
informed models models ! —> engineering
ML models ../ scale N\
A A 7 e
: 7/ RANS
K '/ LES
Improving E
multiscale ! / DNS

modelling

""/'""""""T\?lél'e'c'u'lér' """""" ’Y"
/ scale \
CFD datasets Physical
governing
equations

Fuel, under review
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Hydrogen dispersion

F. Salehi

Ty

Sensors

4mx*0.3mx*0.3m chamber

12 sensors, 20 sensor locations, allowing us to
move them as required

XEN-5320 gas sensors

Using Helium as a surrogate for hydrogen
Standard 20MPa gas cylinder

Flow rate controlled by an air flow meter (L/min)
Fan dismounted for natural dispersion study

v’ leakage rate

v wind velocity

v' slope

v' obstacles and barrier

23



Hydrogen dispersion

e Validation benchmark (Fan dismounted, wind velocity= 0 m/s)

Helium gas flow rate: 67.29 litre/min (Corresponding to 25 litre/min reading as air)

4.0
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Hydrogen dispersion ETTTTTR

Purge Time (Stop to clear) Activation Time (Release to record)
y |- P ——— I 16
13| —14 | H 35L/min
s 1l @ 12 | m251/min
2 o s 1l
= 71 £038 |
@ 5l =06 |
9
g 3! 504 |
1! <02 }
1 l“1__2 3 4 5 6 7 8 9 10 11 12 0
I 1 2 3 4 5 6 7 8 9 10 11 12
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Purge time is larger than 15 s for 5 Hz _
Purge Time (Stop to clear) Activation Time (Release to record)
i -3 P — I 18
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Bayesian inference of gas dispersion

S Augment the HF data with .
bo High-fidelity (HF) 'i,m predictions from the LF model: Traln a HF model on the
e D, = {xm y(")} H - o o = augmented HF data:
= HoYH iy Bu = {{eid 1 (xi)) ) [ACTAED)
.E 1=
= .
3 an—ﬁdel;t;; “‘2 d,ita Train a LF model on the LF data:
a0 —
D, = (x5} f()
E’:'D Generate a f, value: _
E Unseen Predict with LF model: o aeD) Compute
= input i .02 = f, (x.) }—b | e statistics of N;
Q X. kLA s Predict with HF model: | Y. values
a. Y. = fH ({xn ﬁ})
A Repeat N, times |
V = 25.00 L/Min V = 30.00 L/Min V = 35.00 L/Min
20 B+ 200 55O 20 O+ ©
15 - 15 - 15
3100 Ble  + ® 0@ Ele  + @ 100 EBls ¢+ ©
51® e + © 5@ B® - 51 e + ©
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Bayesian inference of gas dispersion

Sensor 7
m: -5.00, V: 25.00 m: -5.00, V: 35.00
0.15 0.15 I
. . . . .
] -
0.10 - 0.10 training high-fidelity data
L ] _
0.05 - 0.05 7
Train Data (RMSE = 1.802e-06)
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| |
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Hydrogen dispersion
Impact of ventilation

e 2 SCFM (laminar flow)
*  6.94% of hydrogen mass fraction at the inlet
* Simulations were conducted using Ansys/Fluent

Ce

9
Y, ’CS
Z/Lx s

C7
* C2 V'
¥ > , /Lx -
>

C4
2.7 X a > &
L P P
¢ b ()
(a) ( ) - 5 I:)oof vent
' - Leakag
R2
Y v &
,j\ z/]\x Z/]\X &
S P & & &
C5 D3

¢ !

% 2

¢ C1

(d) (e) ® 28



Hydrogen dispersion — ventilation

4% hydrogen cloud

F. Salehi

volume containing more
than 4% H, concentration
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Hydrogen dispersion and ventilation

- &
& &
§ |
R3 C3
2 Average extracted hydrogen from roof vent
0.9 * R3:2.42E-5 (kg/s)
o e (C3:1.96E-3 (kg/s)
;g 0.6
= ——R3
0.3 c3
0.0 b——o0
0 200 400 600 800 1000 1200
Time (s)
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Hydrogen dispersion and ventilation

v" C,4 has the best performance to extract hydrogen speedily and not allow to
build up the of flammable gas cloud

Normalised volume (>4% hydrogen concentration)

C9
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Cryogenic hydrogen — dispersion

Health and Safety Laboratory Test 5

Spill diameter (mm) 26.6
Source height (mm) 860
Release rate (kg/s) 0.07
Release duration (s) 305

Wind speed @ 2.5 m (m/s) 3.07

Ambient temperature (K) 284 300
Ambient humidity (%) 68 z 250 g .
E
i 200 |
* Simulations were conducted using FLACS E 0 A
 Porosity/distributed resistance concept I
* A pseudo-source model for leakage ! 3 5 7 9
Horizontal distance (m)
={—NUM-BaseCase A NUM-Yuan
¢ NUM-Ichard ©® Experiment
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FlamVol (m?)

Cryogenic hydrogen — dispersion

LH; storage tank

Ewvaporator

wind direction (X+) || wind direction (Y+)

30 ~ 50 A\ / 50
40 ~ o

£ 40 g 40
30 :o- 30 E 30
20 g 2 E 20
10 = = 10 | —

10
0 . 0 L ! !
0O 20 40 60 80 100 0 25 50 -5 100 0 25 50 75 100
Time (s) Time (s) Time (s)

E. Saleh Leak 1 Leak 2 Leak 3 -




Hydrogen fire and explosion

I Convenient store |

Parking
Dispenser
Heat-exchanger
— . Compressors
Storage room
Tube trailer

* Providing recommendations regarding the separation distance

* Simulations were conducted using FLACS-CFD

* k—& model turbulence and an eddy dissipation concept combustion models
* Abel-Noble equations

* Hydrogen dispersion, fire, and explosion are modelled

F. Salehi 34




Hydrogen fire and explosion

Concentration %

2
1.5
0.3000 E
-
1
Jet fire and explosion are
likely to happen, if potential
00400 ignition source is present
0.5 0.57m Ignition source is placed at
0.8 m height from the leakage
00350 0 I I I
Exp: J. Hazard. Mater. 179, 2010, 84-94 -1 0.5 0 0.5 1
X (m)
12
Leakage area 0.000346 m?
10 .
T 8 ? g Leakage diameter 21 mm
e 8
2 s Leakage mass flow rate |6 g/s
z 6 $ ¢ .
: ¢ Leakage velocity 200 m/s
g
2
0
0 1 2 3 4 5 6 7 8
Sensors' number
® Experiment @ Simulation
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Hydrogen fire and explosion

Release from dispenser

0.18
Domain: 43 m x 38 m 015 L
Leakage size 10 mm 012

Impact of leak location on over-pressure
70 MPa for compressor, heat-exchanger,
storage room, and dispenser,

20 MPa for tube-trailer leakage

Overpressure (bar)
o
o
(o]
T

o o
o o
w »
T T
u..
l,“

0.00
1.000E+02 1.001E+02 1.002E+02 1.004E+02 1.005E+02

F. Salehi time (s)



Hydrogen fire and explosion

Flammable cloud (m?)
N
>

F. Salehi

Compressor Dispenser Heat-exchanger

E3m/s B5m/s B7m/s ®13 m/s

can destroy 50-70% of the
wall construction

0.35

0.3

0.25

e
o

e
—
W

-——-—

Overpressure (bar)

e
[u—

0.05

Compressor

% m14%

Dispenser  Heat-exchanger

m28% m56% = 75%

Can destroy doors
and window frames
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Remarks and future directions

= Safety recommendations for maintenance and recommissioning

= Intelligence sensing and monitoring systems — affordable sensors with high
sensitivity in different environments (e.g. high humidity levels)

= Integration of real-time data for safety and reliability assessment
= Safety recommendations for high-risk environments/industries
» Risk analysis and social licence

v' Better understanding of auto ignition
v Data-driven models
v’ Efficient models for integrated accidents



Thank you for your attention.

Fatemeh Salehi

fatemeh.salehi@mg.edu.au
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