

Hydrogen: challenges and opportunities

A/Prof Fatemeh Salehi School of Engineering Macquarie University, Australia

Overview

Hydrogen: challenges and opportunities

Hydrogen

"Affordable clean hydrogen for a netzero carbon future and a sustainable, resilient, and equitable economy."

 ✓ Hydrogen and hydrogen vectors to decarbonise energy, transport, and heavy industry sectors

Hydrogen

Hydrogen production

8 kg of

Oxygen

Hydrogen storage

- **GH₂:** 0.03 kg per litre, 10% energy loss, brittle under low temperatures, from full metal to full composite pressure vessel: 200-1000 bars
- LH₂: 0.07 kg per litre, 253°C, 40% energy loss, brittle under low temperatures, 4–10 kWh to produce 1 kg of liquid hydrogen, average to large-scale storing and supply
- Cryo-compressed H₂: a supercritical cryogenic gas, -233 °C, no liquefaction without evaporative losses, early stage of development

Hydrogen transmission

- 5%–15% hydrogen by volume
- No significantly increasing risks (overall public safety)
- Durability and integrity of the existing natural gas pipeline network.

Hydrogen utilisation

- Oil refining
- Chemical and fertiliser production
- Ammonia and steel
- ✓ powering vehicles
- \checkmark generating heat
- \checkmark trading clean energy between countries

Hydrogen utilisation

				$\gamma = = = \gamma$		$\gamma = = = \gamma$					
	Industry (General)	Steel	Refinery	Chemical	Other Industry	Light Vehicles	Heavey Vehicles	Aviation	Other Transport	Power	Building
Australia											
Canada											
China				1	1						
France											
Germany											
India								1			
Japan											
Republic of Korea				1	1			1			
Singapore					i			i			
UK											
US											
	(0. 1. 1			<u> </u>						,	

Priority stated in official strategy/roadmap. or demonstrated industry deployment (in the absence of national strategies)

Less emphasis in official strategy/roadmap. or likely opportunity but not specified in a official strategy/roadmap

Hydrogen progress

Hydrogen progress

	2021 As	ssessment	2022 Assessment			
Industry Development Signal	2025 Pace	2030 Pace	2025 Pace	2030 Pace		
Investment	Advancing Quickly	Advancing	Advancing	Advancing		
Project Scale	Advancing Quickly	Advancing Quickly	Advancing	Advancing		
Cost-competitiveness	Advancing Quickly	Advancing Quickly	Advancing	Advancing		
Australia's exports	Advancing	Advancing	Advancing	Advancing		
Chemical feedstock	Advancing Quickly	Advancing Quickly	Advancing Quickly	Advancing		
Electricity grid support	Advancing slowly	Advancing slowly	Advancing	Advancing slowly		
Mining and off-grid	Advancing	Advancing slowly	Advancing	Advancing slowly		
Heavy transport	Advancing slowly	Advancing slowly	Advancing slowly	Advancing slowly		
Light transport	Advancing slowly	Advancing slowly	Advancing slowly	Advancing slowly		
Gas networks	Advancing	Advancing	Advancing	Advancing slowly		
Electricity generation	Advancing Quickly	Advancing	Advancing Quickly	Advancing Quickly		
Steel and iron making	Advancing slowly	Advancing slowly	Advancing slowly	Advancing slowly		
Industrial heat	Advancing	Advancing	Advancing slowly	Advancing slowly		

Hydrogen – indirect impact

- Normalisation by output accounts for varying efficiencies of different electrolysis technologies.
- Full load hours of electrolysers assumed to be 5,000 hours per year.

Hydrogen - challenges

Hydrogen is not new, why is hydrogen safety important?

Hydrogen is not new, why is hydrogen safety important?

- Hydrogen is new as a fuel and energy carrier
- Hydrogen in scale
- Bringing hydrogen to public

- A major release of high-pressure hydrogen occurred in Santa Clara during a gaseous hydrogen fill of a modular multi-cylinder trailer.
- 250 kg of hydrogen was released.
- ✓ Initial leak
- ✓ Miscommunication
- $\checkmark\,$ Hydrogen explosion and jet fires
- ✓ Subsequent fires

Learn from history Be proactive about risks!

Risk assessment

<u>Risk</u>

Real-time measurements

Computational fluid dynamics

Machine learning and probabilistic modelling

Computational and data-driven models

Computational and data-driven models

- $4m \times 0.3m \times 0.3m$ chamber
- 12 sensors, 20 sensor locations, allowing us to move them as required
- XEN-5320 gas sensors
- Using Helium as a surrogate for hydrogen
- Standard 20MPa gas cylinder
- Flow rate controlled by an air flow meter (L/min)
- Fan dismounted for natural dispersion study

- ✓ leakage rate
- \checkmark wind velocity
- ✓ slope
- \checkmark obstacles and barrier

- Validation benchmark (Fan dismounted, wind velocity= 0 m/s)
- Helium gas flow rate: 67.29 litre/min (Corresponding to 25 litre/min reading as air)

Fan velocity 5 Hz

Bayesian inference of gas dispersion

Bayesian inference of gas dispersion

Sensor 7

Impact of ventilation

C3

- 2 SCFM (laminar flow)
- 6.94% of hydrogen mass fraction at the inlet

C7

• Simulations were conducted using Ansys/Fluent

C9

Hydrogen dispersion – ventilation

volume containing more than 4% H₂ concentration

Hydrogen dispersion and ventilation

Average extracted hydrogen from roof vent

- R3: 2.42E-5 (kg/s)
- C3: 1.96E-3 (kg/s)

Hydrogen dispersion and ventilation

✓ C_9 has the best performance to extract hydrogen speedily and not allow to build up the of flammable gas cloud

Cryogenic hydrogen – dispersion

Health and Safety Laboratory Test 5

Spill diameter (mm)	26.6
Source height (mm)	860
Release rate (kg/s)	0.07
Release duration (s)	305
Wind speed @ 2.5 m (m/s)	3.07
Ambient temperature (K)	284
Ambient humidity (%)	68

- Simulations were conducted using FLACS
- Porosity/distributed resistance concept
- RANS ($k \varepsilon$ model)
- A pseudo-source model for leakage

Cryogenic hydrogen – dispersion

- Providing recommendations regarding the separation distance
- Simulations were conducted using FLACS-CFD
- $k-\varepsilon$ model turbulence and an eddy dissipation concept combustion models
- Abel-Noble equations
- Hydrogen dispersion, fire, and explosion are modelled

Experiment Simulation

Overpressure (Bar)

Release from dispenser

- Domain: 43 m × 38 m
- Leakage size 10 mm
- Impact of leak location on over-pressure
- 70 MPa for compressor, heat-exchanger, storage room, and dispenser,
- 20 MPa for tube-trailer leakage

Remarks and future directions

- Safety recommendations for maintenance and recommissioning
- Intelligence sensing and monitoring systems affordable sensors with high sensitivity in different environments (e.g. high humidity levels)
- Integration of real-time data for safety and reliability assessment
- Safety recommendations for high-risk environments/industries
- Risk analysis and social licence
- \checkmark Better understanding of auto ignition
- ✓ Data-driven models
- $\checkmark\,$ Efficient models for integrated accidents

Thank you for your attention.

Fatemeh Salehi

<u>fatemeh.salehi@mq.edu.au</u>

Acknowledgement

- Blue Economy Cooperative Research Centre
- CSIRO Innovation Connections
- Macquarie Sustainable Energy Research Centre
- National Computational Infrastructure Australia
- Australian-American Fulbright Commission
- Department of Climate Change, Energy, the Environment and Water